Course

Utah 15 Hour Renewal Bundle

Course Highlights


  • In this Utah 15 Hour Renewal Bundle course, we will learn how to identify individual and organizational behaviors/ factors that heighten the risk for nurse burnout.
  • You’ll also learn how to Recognize risk factors that could lead to a bullying environment.
  • You’ll leave this course with a broader understanding of the signs and symptoms of constipation.

About

Contact Hours Awarded: 15

Course By:

Various Authors

Begin Now

Read Course  |  Complete Survey  |  Claim Credit

 

Nurse Burnout

Introduction   

In May 2022, during Mental Health Awareness Month, the United States Surgeon General Dr. Vivek Murthy issued a new Surgeon General’s Advisory highlighting the urgent need to address the health worker burnout crisis nationwide. Citing existing challenges in the healthcare system and the long-term effects of the coronavirus pandemic, Dr. Murthy prioritized our healthcare workers' mental health to strengthen our nation’s public health infrastructure.  

This report stated that “…. up to 54% of nurses and physicians, and up to 60% of medical students and residents, suffering from burnout”.  Symptoms of burnout have indeed impacted the current workplace, and ongoing employee mental and physical exhaustion results in a vulnerable, compromised workforce (2).  

The lingering effects of post-pandemic burnout have affected every element of our current healthcare system. Healthcare professionals are leaving the profession at an alarming rate (due to illness and scheduled retirement), which translates to increasing shortages of providers. Coupled with additional vacancies due to ongoing mental health conditions (depression, anxiety, post-traumatic stress disorder), our healthcare system is experiencing significant gaps in its ability to provide quality care across the healthcare spectrum.   

While the legislature addresses healthcare burnout on a larger scale, nurse professionals owe it to themselves to recognize the signs and symptoms of nurse burnout and take appropriate action to protect themselves, their families, colleagues, and patients.  

Quiz Questions

Self Quiz

Ask yourself...

  1. Why do you think the coronavirus pandemic caused such large numbers of healthcare worker burnout? 
  2. How do you think the coronavirus pandemic affected your place of employment?  
  3. What difference did the pandemic make in your specific job responsibilities?  

Nurse Burnout vs. Compassion Fatigue 

Although the terms “nurse burnout” and “compassion fatigue” are often used interchangeably, they do refer to two separate conditions (4). Nurse burnout is the term used to describe emotional and physical exhaustion related to ongoing stressful working environments and associated responsibilities. Burnout has a gradual onset and usually occurs in behaviors such as decreased workplace productivity and persistent feelings of hopelessness, helplessness, and overwhelming exhaustion. 

Compassion fatigue, on the other hand, often emerges from some prolonged emotional stress or strain. It may occur after exposure to a traumatized individual more so than a workplace trauma. Signs and symptoms of compassion fatigue may manifest in such behaviors as anger, irritability, increased anxiety, and physical exhaustion. In comparing burnout to compassion fatigue, burnout appears to gradually rise to the surface, while compassion fatigue occurs more suddenly (5).  

Quiz Questions

Self Quiz

Ask yourself...

  1. Regarding compassion fatigue, what situations could make a healthcare professional “angry, irritable, and exhausted” while on duty? 
  2. Regarding nurse burnout, what situations could make a healthcare professional feel “hopeless and helpless” while on duty? 

Life As a Nurse 

An average day in the life of a nurse will include varying degrees of stress and long work hours. Both factors are known to affect one’s mental health, yet it is considered “a normal day’s work” when describing a day in the life of a nurse.  

In any workplace setting, a nurse's role includes a very demanding set of acceptable stressors (“part of the job”). Upon completing a highly stressful workday, nurses may head home to face additional demands on their time and energy levels (child/elder care, various household responsibilities, and community and church obligations, to name a few). This routine leaves little time for rest and recovery, both mind and body. 

All those demands on their time and attention can lead to compassion fatigue. The pandemic is a convincing example of both nurse burnout and compassion fatigue. Nursing professionals were repeatedly exposed to critically ill patients, many of whom did not survive. Staffing patterns were suboptimal, critical care beds and equipment were sorely lacking in some areas, and the daily stressors felt during a single shift seemed to repeat themselves. There was no quality “downtime” for nurses to take a well-deserved break, much less debriefing and regrouping/refocus efforts.  

This pandemic, a universal “once in a lifetime” event by any standard, affected everyone at some level. Nurse professionals were witnessing traumatic losses of life every day. Compassion fatigue, understandably so, began to surface. The healthcare community experienced anger, irritability, and increasing levels of anxiety. They took to the news media, voicing feelings of isolation, despair, anger, and devastation. They publicly spoke of sleep difficulties, increased workloads, and lack of appropriate lifesaving supplies, thus becoming more exhausted and cynical with each passing shift. When the pandemic crisis finally came under control, the landscape of nursing looked quite different (6).  

Nurses had resigned, transferred, or walked off their shifts. Early retirements and medical leaves of absence were increasing in number. Enrollments in nursing schools were down. The healthcare arena continues to suffer years later, looking for solutions to “heal thyself.”  

So, the question remains…. What can we do to reduce the risk of nurse burnout moving forward? 

Quiz Questions

Self Quiz

Ask yourself...

  1. How would you describe your current workplace? 
  2. Do you feel appreciated for your efforts while at work? 
  3. What is one “major stressor” you wish to change at your workplace? 

Burnout Risk Factors

While no single factor causes nurse burnout, there are undoubtedly identifiable risk factors and patterns that heighten the risk. Early identification and intervention of such risk factors lower the chances of nurse professionals suffering personally and professionally. 

Increased workloads (due to staff call-ins, lack of patient care equipment, and lack of ancillary help) are a leading causative factor in nurse burnout. In addition, lack of support from senior leadership, unit managers, worksite colleagues, and other members of the organizational healthcare team impacts feelings of helplessness and hopelessness.  

Again, there is no single factor to point blame at, but there are often patterns of behavior that warrant further investigation at the workplace. In addition, nurse burnout is very individualized. What is harmful and hurtful to one nurse may not be seen as such to another nurse.  

The goal is to make the workplace environment supportive for all employees by creating (and nurturing) a culture that welcomes nursing input. By recognizing the bigger picture of individual and organizational safety, the nurse in crisis feels safe in stepping forward and seeking professional help in a supportive environment. 

While nurse burnout can occur in any area of nursing, from hospitals to clinics to home health settings and beyond, some areas are at higher risk for burnout. Nursing professionals in the intensive care and emergency care units are at higher risk for symptoms of burnout.  

Studies have shown that many specialty nurses experience anxiety, increasing exhaustion, and mounting frustration while on duty. Combined with a patient population often experiencing high rates of trauma-related mortality and complex illnesses, it is understandable that “typical workdays” may be filled with extremely high levels of workplace stress. 

Quiz Questions

Self Quiz

Ask yourself...

  1. Think about your current workplace. Are there any factors that could contribute to burnout? 
  2. Have you witnessed anyone in your workplace display signs of being “burned” out?  

Causes of Burnout 

An article published in the Journal of the American Medical Association identified some causes that directly impact nurse burnout (7). The authors found that nurses who routinely worked longer shifts (extra shifts, mandated overtime shifts) and experienced sleep deprivation exhibited symptoms of burnout. The combination of excessive work hours and inadequate sleep (as often occurred with shortened turnaround times and back-to-back shifts) resulted in increased patient care errors. These occurrences often compounded the feelings of helplessness and hopelessness (8).   

Quiz Questions

Self Quiz

Ask yourself...

  1. Have you ever picked up extra shifts only to regret it afterward? 
  2. How did you feel after working those extra shifts? 

 Impact on (Individual) Health 

In the early stages of burnout, the nurse professional may feel overworked, underappreciated, and physically tired. While such symptoms may appear benign when occurring sporadically and “chalked up” to “just having a bad day,” repeated shifts like this may manifest into a more profound feeling of despair.  

It soon becomes challenging to continue working under such circumstances, further escalating the situation. To distance oneself from these feelings, the nurse professional may become cynical and jaded about their workplace, mentally distancing themselves from colleagues. These efforts only serve to isolate the individual further and exacerbate feelings of hopelessness and isolation while negatively impacting workplace efficacy (9).  

 Impact on Workplace/Organization Health 

The stressed out, overworked, and exhausted nurse professional may unknowingly / unintentionally compromise the quality of care. Feelings of helplessness and hopelessness can negatively affect the nurse’s judgment and critical thinking skills. Critical steps/tasks may be skipped when the nurse is tired and overworked.   

Nurse burnout negatively impacts job satisfaction and, in doing so, also negatively impacts patient care. The effect will be poor patient care, increased patient and family complaints, and poorer patient outcomes. Nurse burnout affects not only the individual but the organization. (10) 

Quiz Questions

Self Quiz

Ask yourself...

  1. How does a nurse unintentionally compromise the care being delivered to a patient? 
  2. How do you think being sleep-deprived could affect your abilities while on duty? 

Self-Care Strategies 

“I have come to believe that caring for myself is not self-indulgent. Caring for myself is an act of survival.”
— Audre Lorde (3). 

What is self-care? (12)  

In the most basic definition, self-care refers to doing things that will improve your physical and mental health. It is very subjective, and self-care strategies must focus on your needs, wants, and desires. As stated, nurse burnout is very individualized: what profoundly affects one nurse may not even bother the next nurse.  

The strategies discussed here are generic; they must be personalized to fit your specific needs and healing process.  

  • A good night’s sleep: Limit caffeine intake before bedtime, no electronics 1-2 hours before sleep, lower room temperature to facilitate comfortable sleep, and blackout curtains. 
  • Physical activity: Light-impact activities such as swimming, yoga, walking, bike riding, and other activities will be physically and mentally beneficial. 
  • Diet: Maintain a balanced diet. Monitor hydration levels and limit caffeine products. The goal is to nourish your body to offset the adverse effects of stress. Cut down on processed food intake and “junk foods.”  
  • Mental health: Journaling, podcasts, music, and joyful hobbies and activities (knitting, crafts, painting).   
  • Homefront Maintenance: Calm surroundings foster the healing process. Keep the environment clean, uncluttered, and welcoming. Empty the sinks and dishwashers, fold the laundry, and make your bed. Aromatherapy, lighted candles, and essential oils are all ways to make your home a place to rest and relax. 

 

The list of “self-care “strategies is endless. Be sure to find an appropriate diet, activity, and behaviors that enable you to focus on building a balanced lifestyle. 

 

Quiz Questions

Self Quiz

Ask yourself...

  1. What are some self-care strategies that have worked in your personal life? 
  2. How could you encourage a nursing colleague to “take better care of themselves” through self-care practices? 

Organizational Strategies   

Healthcare organizations must provide structured support for their nurse professionals to ensure quality patient care.  Facility-wide strategies work best to identify and treat nurse stress and burnout early. 

  • Nursing rounds- routinely meet with nursing staff and listen to their feedback. Ask the difficult questions (staffing patterns, scheduling issues) and be receptive to working on viable solutions.  
  • Support staff in utilizing earned days off, vacation time/ paid time off.  
  • Open lines of communication with staff experiencing signs of nurse burnout or compassion fatigue. Offer alternate job duties and work assignments if possible. 
  • Acknowledge employee organizational loyalty (through retention bonuses, additional days off, gift cards, personalized thank-you letters, and personal development endeavors). 
  • Encourage critical debriefings for staff members involved in essential/traumatic patient care encounters. 
  • Openly promote facility resources available to staff, including all Employee Assistance Programs. 

 

Quiz Questions

Self Quiz

Ask yourself...

  1. How do you feel your healthcare organization could improve the current workplace?  
  2. What are some employee assistance programs currently offered at your workplace?  
  3. What incentives/ acknowledgments from your nurse leaders would most benefit staff morale? 

Case study 

Marie is a 35-year-old Registered Nurse working full-time on a 16-bed ICU unit. She has been employed here for three years, beginning her employment at the start of the coronavirus pandemic. Marie works 12-hour shifts (7p-7a) with every other weekend off. Two of Marie’s nurses' coworkers recently resigned, leaving the unit chronically short-staffed.  

Marie has been working additional shifts to help her coworkers and has just completed a 50-hour work week. She was once again called into work early and arrived on only 4 hours of sleep the night before. The unit is at total capacity with 2 “ICU holds” in the Emergency Department. Marie has fallen behind on her patient care while intercepting repeated calls from the ED staff.  

Marie spent a long overdue break crying in the nurse's lounge. She confided to another staff member (Anne) that she is exhausted and overwhelmed by these work conditions and is considering resigning. Anne told Marie to take a few more minutes for her break and promised to discuss the situation with their charge nurse, Carol. Marie agreed.  

Anne discussed the situation with Carol, stating Marie is a great nurse who has been working too many shifts lately. Anne offered to pick up some of Marie’s current patient assignments to lower Marie’s stress level, hopefully. Carol approved and also took some of Marie’s patients. Marie finished her break, apologized to her coworkers for her “moment of weakness,” and promised, “it wouldn’t happen again.”  

 

Quiz Questions

Self Quiz

Ask yourself...

  1. What factors did you identify that put Marie at risk for nurse burnout? 
  2. If Marie confided in you, as a colleague, that she was exhausted and overwhelmed, how would you respond? 
  3. Marie apologized for her “moment of weakness” and promised “it wouldn’t happen again.” How would you respond to this employee if you oversaw this shift? 
  4. What resources are available at your current workplace for employees who acknowledge they are “exhausted and stressed out”? 
  5. If you were the Nurse Manager of this ICU, what would you do to support your staff during this time (* significant staffing shortages due to recent resignations)? 

 Resources 

The following links are provided for additional information on nurse burnout surveys. 

Conclusion

The healthcare workforce continues to be challenged by large numbers of scheduled retirements, an aging population, and medically complex patients. Nurse leaders must proactively hire and retain a healthy workforce (13). Healthcare organizations must invest in a workplace culture that supports workers' work/life balance. It is the key to ensuring the health and safety of our nation. 

 

Bullying in Nursing

Introduction   

In a time when bullying has become one of the most frowned upon behaviors, why is it thriving in the world of nursing? We’ve all heard the saying that “nurses eat their young”. It is a term that has been passed down the nursing ranks as each generation of nurses enters the workplace; unchanged and still true. We, as nurses, cannot permit such unhealthy and detrimental behavior to continue. In this course, we will discuss nurse bullying, why it happens and what we can do to break the curse. 

Definitions 

To fully understand nurse bullying and the issues that come with it, we must define some terms and phrases so that we are all on the same page.  

Nurse Bully 

A nurse bully is someone who repeatedly harasses and/or harms other nurses whom they believe they can dominate; they may also see them as less skilled or incompetent (5).  

 

Incivility 

Incivility is a type of lower-level bullying that entails more passive types of behavior. This is your mocking, gossiping, alienation, and general rudeness. The difference between incivility and actual bullying is that incivility may not actually harm the victim (6). 

 

Harassment 

Harassment is when someone torments or intimidates another person (4). 

 

 

 

 

Quiz Questions

Self Quiz

Ask yourself...

  1. What is the difference between incivility and bullying? 
  2. Who is the victim of the nurse bully? 

Incidence Rate 

The nursing profession has historically been known as the most trusted profession. Nursing is also synonymous with caring and compassion. From the outside looking in, it may be difficult to believe that bullying could exist in such a respected and revered profession. The prevalence of bullying in nursing is staggering. Both new and seasoned nurses; young and old; nurses of every gender; and nurses of every walk of life report that they have been bullied on the job. These instances represent a wide variety of bullying behaviors which include verbal abuse, threatening, scapegoating, sabotage, and physical abuse (5). 

Incidence rates of bullying in nursing, as documented in a variety of studies, ranging from 17-85%. This includes incidents of verbal abuse, threatening, belittling, and even physical abuse.  With the prevalence of bullying so high among nurses, it is safe to say that virtually every nurse has been touched by bullying, whether victim, perpetrator, or observer (5). 

Quiz Questions

Self Quiz

Ask yourself...

  1. Does the incident rate of nurse bullying surprise you? 
  2. Have you ever witnessed or been involved in an incident of nurse bullying? 

Why Does It Occur? 

What drives bullying behaviors? What makes a bully? There are a myriad of factors that come into play when discussing why bullying occurs.  

Anger and frustration are two strong emotions that can contribute to bullying behaviors. In today’s nursing work environment, anger and frustration are at the forefront of many nursing units. Nursing shortages have left many units understaffed and the nurses overworked. This frustration leads to anger when the nurses who have remained loyal, full-time staff see travelers come into their areas making higher pay. Lack of resources and the belief that they are unheard of also contribute to feelings of frustration (5). 

The belief that another nurse is less competent or altogether incompetent can also lead to bullying. When it is perceived that another nurse can’t do their job and therefore may leave tasks for the oncoming shift, the above-mentioned frustration sets in and bullying may result. Just the feeling of superiority over another nurse can have bullying effects on the nursing environment (1). 

Quiz Questions

Self Quiz

Ask yourself...

  1. Is there a key risk factor that promotes an environment of nurse bullying? 
  2. Are nurse bullying risk factors real or perceived? Explain. 

Risk Factors 

There are some circumstances that contribute to the bullying climate. These are not excuses that give permission to the bullies, rather they are risk factors that have been identified as possible catalysts to bullying behaviors. 

 

Seniority 

Some nurses may feel that they have “paid their dues” and should have authority over their less-experienced peers. If this authority is not granted, the senior nurse may harbor feelings of underappreciation and lash out by being unhelpful or, to the extreme, harmful. The aim is to show how much this nurse is needed; they will refrain from helping the newer nurse or giving any advice (5). 

 

Insecurity 

When new nurses come into the workplace, the existing nurses may feel that they will be replaced. Nursing is an ever-evolving occupation with new technologies and treatments being developed all the time. A new nurse who was taught the most up-to-date trends in nursing may pose a threat to their job. This is when the nurse may start to bully the new nurse joining the team (1). 

 

Protection 

Some nurses become very attached to their patients. They may feel that no one else can give the same level of care that they can. As a result, they may see other nurses as incapable of providing care that is up to their standards. Only they can provide the care that their patients require. These perceived inadequacies can quickly turn into bullying behaviors (1). 

 

Education 

Differences in levels of education may also contribute to bullying. Nursing has many different levels of education and nurses from all these levels may work together on a single unit. Nurses with higher levels of education may feel superior and lash out at those with less education. RNs may treat LVNs differently than their RN peers (3).  

Quiz Questions

Self Quiz

Ask yourself...

  1. Name 2 risk factors that contribute to nurse bullying. 
  2. Have these risk factors led to a nurse bullying environment in your organization? 
  3. Does one risk factor stand out to you as a prime contributor to nurse bullying?  
  4. Which one? 

Types of Bullying 

It is important to note that not every bullying-type behavior can be construed as actual bullying. We all have bad days when things just don’t seem to be going right and we may react inappropriately. One of the key factors that differentiates bullying from a lapse in judgment is that bullying is a repeated or habitual behavior.  

This does not excuse the one-time behavior however, we must realize that not all poor behaviors are bullying. Nurse bullying may manifest itself in a variety of different behaviors. Below, we will discuss a few of these types of bullying. This is by no means an exhaustive list of all possible bullying behaviors; they are some of the behaviors that you may commonly see in the healthcare environment (5). 

 

Verbal abuse 

This may include being rude, belittling, criticizing, and threatening. We’ve all heard “sticks and stones may break my bones, but words will never hurt me”. This is a false saying as constant verbal abuse plays with our psyche as we rerun the taunts in our heads over and over. If heard enough, we may start to believe the bully’s words. 

 

Controlling 

Constantly telling another nurse what to do and how to do it. This is unsolicited advice that if not taken may escalate bullying behaviors. Controlling behaviors may also include certain “looks” and intimidating posturing. 

 

Ignoring/excluding 

Ignoring requests for help. Ignoring any suggestions to better provide care to the patients. Excluding that one nurse from lunch plans, work-related activities, or any after-work gatherings. 

 

Assigning heavy workloads 

Repeatedly assigning a nurse a heavy workload while everyone else’s load is relatively light. All the other nurses have time to sit and document while the one nurse is overwhelmed. 

 

Physical abuse 

Unwanted physical contact is usually violent in nature.  

 

Mobbing

This happens when a group of bullies band together to create an environment to force the victim to resign (2).  

 

 

 

 

Quiz Questions

Self Quiz

Ask yourself...

  1. Have you witnessed any of these behaviors at your organization? 
  2. Is there a behavior that is most indicative of nurse bullying? 
  3. What is the key aspect that makes these behaviors acts of bullying? 

Characteristics of a Nurse Bully 

Nurse bullies come in all shapes and sizes and come from all walks of life. There isn’t necessarily a template for what a nurse bully will look like. However, there are some characteristics that may help identify a nurse bully.  

You may encounter a nurse who bullies out of a sense of superiority. They will be condescending and have an entitled attitude. You will also recognize them by their “correcting comments” often spoken where others can hear. Next, we have nurses who bully because they have been offended by something said or done. They bully with an ax to grind. They may hold on to the grudge for a long time. Creating drama with the victim at the center will be their course of action; they will try to pull in other nurses to help ostracize their victim. Other nurse bullies will use rumors and gossip to bully their victim (3) 

These bullies love to dish out the put-downs but can’t take any back. They will become offended at the slightest criticism. There are others who will be very friendly at first. Bringing the victim in close to learn details of their lives and then using that information against them. They will weaponize all obtained information to lift themselves up.  Another characteristic is envy. There are those bullies who are envious of others. The envy could stem from something totally unrelated to nursing or the workplace. The victim, however, will most likely possess the item or characteristic that the bully is envious of. This bully is very bitter. Finally, there is the bully who plays favorites. They will favor their clique and ignore or exclude the victim (3). 

Quiz Questions

Self Quiz

Ask yourself...

  1. Do you recognize these characteristics in the nurses you work with? 
  2. Do you see any of these characteristics in you? How will you change? 

What Can You Do? 

There are many actions that you can take when you are either the witness or victim of nurse bullying. Though some bullies may be intentionally trying to intimidate a fellow nurse, there are those who are oblivious to the fact that they are bullies. They behave like a bully without knowing that they are perceived as such.  

The first action that you may want to take is to talk with the bully about the behavior. The bullying may end there. Once it has been brought to the bully’s attention that the behavior is being taken as bullying, change can occur. Communication may be all that is needed (5). Prior to speaking with the bully, try using empathy. Put yourself in the bully’s shoes to figure out what the motive for the behaviors may be. This may aid you in both the tone and direction of the conversation. 

Identifying a mentor in the workplace can also help you through a bullying situation. Having someone that you can talk to about the issue and seek their advice about how to handle the situation. Look for those nurses who can’t be bullied. Why do the bullies not prey on them? Why are they not intimidated? Often, these nurses are focused on the patient’s needs above all else and refuse to allow any situation to be about them or the bully (3). 

Talking with your manager or director is another prudent course of action. It is possible that these nurse leaders have the best vantage point to deal with and prevent nurse bullying. They work closely with the front-line staff nurses and should have the pulse of the unit. In their position of authority, they are also able to investigate and, if needed, conduct disciplinary actions.  

Unless your manager or director is the bully, a meeting with them to discuss any instances of bullying is needed. Contacting the Human Resources department is another step that can be taken. No matter the situation, it is always important to follow your facility’s policies and procedures and chain of command (3). 

Quiz Questions

Self Quiz

Ask yourself...

  1. What can you do to prevent/stop nurse bullying in your organization? 
  2. What organizational resource should you use to guide your actions? 

Solutions to Nurse Bullying 

Nurse bullying has repercussions throughout the entire facility. According to a study from 2012, the cost for each individual who is bullied can be from thirty thousand to one hundred thousand dollars (3). This includes the cost of absenteeism, lower work performance, any therapies needed for physical and psychological issues, and increased turnover due to ongoing bullying.  

Nurse bullying can also play a big part in the overall feeling of “burnout” among nurses. Nurse bullying can lead to workplace errors which means it is crucial that organizations have strategies to combat any kind of bullying in the workplace. As nursing accounts for the majority of employees at most hospitals, curbing nurse bullying should be in the forefront. Here are some organizational strategies that should be considered: 

 

Culture of Safety 

Many organizations have adopted a “Culture of Safety”. The Culture of Safety promotes patient and colleague safety. It is the shared beliefs and values of the organization that influence behaviors and actions. Principles such as non-punitive reporting, communication of policies and expectations, recognition, and leadership modeling of behaviors all come into play in the Culture of Safety. All reports of bullying should be taken seriously (3). 

 
Admit that there is a problem 

Like any issue, the first step in fixing it is admitting that the problem exists in the first place. Bullying thrives in the darkness. Once it is brought to light and people are talking about it, it can be addressed. Even if there is no evidence of nurse bullying in your area, talking about and discouraging it may stop it from even starting (3). 

 

Elimination 

Try to eliminate factors that promote an environment of bullying. 

 

Commitment 

The organization should commit to a zero-tolerance policy when it comes to bullying. The policy on bullying should outline clear expectations along with the consequences that will be enforced if the policy is not followed. The policy should also include the organization’s social and online media sites (3). 

 

Accountability 

Nurses should be encouraged to hold each other accountable. You promote what you permit. As there are generally more bullying witnesses than actual bullies, nurses must be empowered to call out bullying. This can lead to a true change in the culture of an organization (3). 

Quiz Questions

Self Quiz

Ask yourself...

  1. Is your facility currently using any of the above-mentioned strategies? 
  2. How have these strategies mitigated the incidence of nurse bullying in your area? 
  3. Can an organization eliminate nurse bullying? 

Conclusion

Nurse bullying is a real problem that can affect any unit in any hospital. It creates a toxic work environment that we, as nurses, can no longer tolerate. In this post-COVID time, nursing shortages and nurse burnout are rapidly depleting the nursing ranks. It is time for nurses to call out bullying when they see it. It is time for nurse leaders to enforce the organizational consequences of nurse bullying.  

We must create safe environments for our new nurses (all nurses) to thrive. It is the only way that our profession will survive. Know the signs of nurse bullying and become the change within your organization. Empower your colleagues to do the same. Together, we can see an end to nurse bullying. 

 

Quality Improvement for Nurses

Introduction   

Welcome to the world of Quality Improvement (QI) in healthcare, a dedicated field committed to continually enhancing patient care and outcomes. Quality Improvement involves a systematic approach to identify, analyze, and address areas for improvement within healthcare processes, ultimately resulting in improved patient safety, satisfaction, and overall healthcare excellence (13). In this course, we will embark on a journey to explore the fundamental principles and practical applications of QI, explicitly tailored for nurses who aspire to make a positive impact in their healthcare settings.

As a nurse, you know the significance of providing high-quality patient care. However, you may wonder how you can actively contribute to improving the systems and processes in your workplace.

Imagine this scenario: You observe a recurring issue with medication administration, where doses are occasionally missed due to workflow inefficiencies. Through this course, you will acquire the knowledge and skills to apply QI methodologies like Plan-Do-Study-Act (PDSA) cycles to investigate such issues, implement changes, and monitor the impact of your interventions. By understanding QI principles and tools, you will be better equipped to collaborate with your colleagues, drive meaningful improvements, and ensure that your patients receive the best care possible.

Quiz Questions

Self Quiz

Ask yourself...

  1. How can nurses leverage their unique position at the bedside to identify opportunities for quality improvement in healthcare settings? 
  2. Can you provide an example from your own experience or knowledge where a quality improvement project led to tangible improvements in patient care? 
  3. What potential challenges could a nurse encounter when attempting to implement quality improvement projects? 

What is Quality Improvement?

Quality Improvement (QI) in healthcare represents an ongoing, systematic effort to elevate the quality of patient care and healthcare services that involves identifying areas needing improvement, implementing changes, and evaluating the effects of those changes to ensure better patient outcomes (12).

Let’s envision a scenario where a hospital's surgical department grapples with a higher-than-average rate of post-operative infections. Through a QI initiative, the healthcare team can meticulously scrutinize the surgical processes, pinpoint potential sources of infection, and introduce evidence-based practices such as enhanced sterilization techniques or more rigorous antibiotic prophylaxis protocols. Over time, they can gauge the effectiveness of these changes by monitoring infection rates for a reduction.

Commonly used QI methodologies in healthcare include the DMAIC (Define, Measure, Analyze, Improve, Control) process and the Plan-Do-Study-Act (PDSA) cycle. These approaches provide structured frameworks for healthcare professionals to tackle issues systematically and iteratively. For example, imagine a bustling primary care clinic with extended patient wait times.

Here, the PDSA cycle can come into play using the systematic iterative steps below:

  1. The team defines the problem (lengthy wait times)
  2. The team proceeds to test a change (for example, adjusting appointment scheduling)
  3. The team then scrutinizes the results and acts accordingly to refine the process.

 

Quiz Questions

Self Quiz

Ask yourself...

  1. How does the concept of Quality Improvement (QI) align with the goal to provide the best possible care for patients? 
  2. Can you think of a specific healthcare scenario where QI methodologies like DMAIC or PDSA could significantly improve patient care? 
  3. What are the advantages of using structured frameworks like DMAIC and PDSA in QI initiatives? 
  4. How do DMAIC or PDSA contribute to the success of improvement projects? 

History and Background of Quality Improvement 

The history and background of Quality Improvement (QI) in healthcare have a rich and evolving timeline, dating back to the early 20th Century, with significant developments occurring over the years. One pivotal moment in this journey was the introduction of statistical quality control by Dr. Walter A. Shewhart in the 1920s (24). Dr. Shewhart's pioneering work laid the foundation for using statistical methods to monitor and enhance processes, a concept that would become integral to QI initiatives (24). 

In the mid-20th Century, the contributions of Dr. W. Edwards Deming further propelled QI principles forward (7). Dr. Deming emphasized the significance of continuous improvement, active employee engagement, and process variability reduction. His ideas found fertile ground in post-World War II Japan, playing a crucial role in the nation's economic recovery and the emergence of renowned companies like Toyota, famous for its Toyota Production System (TPS), incorporating QI concepts (7). 

Until today, QI has become indispensable to healthcare systems worldwide (16). To illustrate, envision a scenario where a hospital grapples with a high readmission rate among heart failure patients. By scrutinizing historical data and implementing evidence-based protocols for post-discharge care, hospitals can effectively lower readmissions, enhance patient outcomes, and potentially evade financial penalties under value-based reimbursement models (16). 

Quiz Questions

Self Quiz

Ask yourself...

  1. How did the work of Dr. Walter A. Shewhart in the early 20th Century contribute to the foundation of QI, and how do statistical methods continue to play a role in healthcare improvement today? 
  2. What fundamental principles were introduced by Dr. W. Edwards Deming, and how did they influence QI practices in healthcare and other industries? 
  3. Can you provide an example of how QI methodologies, inspired by Deming's principles, have been successfully applied in modern healthcare settings to address specific challenges or improve patient care? 
  4. How has continuous improvement evolved, and why is it considered a cornerstone of QI in healthcare? 

Models 

At the heart of ongoing transformations in healthcare lies various Quality Improvement (QI) models. These models provide structured frameworks for identifying and addressing areas of improvement within healthcare systems (14). These models offer healthcare professionals a systematic approach to instigate meaningful process changes, ultimately resulting in elevated care quality. See some models below. 

 


 

Model for Improvement 

The Model for Improvement is a widely recognized and highly effective framework for Quality Improvement (QI) in healthcare. This is because it empowers healthcare professionals to systematically test and fine-tune their ideas for process improvement, ensuring that changes are grounded in evidence and proven effective (17).  

The Model for Improvement offers a structured and systematic approach to identifying, testing, and implementing changes to enhance healthcare processes and ultimately elevate patient outcomes.  

Developed by Associates in Process Improvement (API), this model revolves around the iterative "Plan-Do-Study-Act" (PDSA) cycle, which forms the foundational structure of QI initiatives (17). The Plan-Do-Study-Act (PDSA) cycle is a systematic approach that guides healthcare teams through quality improvement, and it comprises the four key phases below, each contributing to developing and implementing meaningful changes in healthcare practices (12). 

  • Plan: In this initial phase, healthcare teams define the specific problem they aim to address, set clear and measurable goals, and craft a comprehensive plan for implementing the proposed change. For instance, if a hospital seeks to reduce patient wait times in the emergency department, the plan may involve adjustments to triage protocols or streamlining documentation processes. 
  • Do: Once the plan is established, the proposed change is implemented, typically on a small scale or within a controlled or pilot environment. This enables healthcare professionals to assess the feasibility and potential impact of the change without making widespread adjustments. 
  • Study: The study phase involves rigorous data collection and analysis to evaluate the effects of the change. In our example, the hospital would measure the impact of the new triage protocols on wait times, closely examining whether they have decreased as expected. 
  • Act: Based on the findings from the study phase, the healthcare team makes informed decisions about the change. They may adopt the change if it has successfully reduced wait times, adapt it further for enhanced effectiveness, or, if necessary, abandon it.

The PDSA cycle's iterative nature means adjustments can be made, and the cycle repeats until the desired improvement is achieved (12).

 

 

Lean Model 

The Lean model, initially conceived in the manufacturing sector, has found considerable success and applicability in healthcare as a potent tool for process enhancement and waste reduction (22). At its core, Lean thinking revolves around the principles of efficiency and value optimization because it focuses on refining processes to eliminate wasteful elements while simultaneously delivering care of the highest quality (22).  

Healthcare organizations have adopted Lean methodologies to tackle many challenges, from reducing patient wait times to improving inventory management and elevating overall patient satisfaction (22). For instance, when a hospital is challenged with prolonged wait times in its outpatient clinic, it can apply Lean principles to systematically analyze the patient flow, pinpoint bottlenecks, and streamline processes.  

This might involve reconfiguring furniture to enhance flow, adjusting appointment scheduling, or implementing standardized work procedures. The ultimate objective is to cultivate a patient-centric, efficient environment that ensures timely access to care while meticulously conserving time and resources. 

Another integral aspect of Lean thinking is the unwavering commitment to continuous improvement and the pursuit of perfection through the systematic identification and eradication of various forms of waste (19). The forms of waste are often categorized into seven types: overproduction, waiting, unnecessary transportation, overprocessing, excess inventory, motion, and defects (19). By keenly identifying and addressing these forms of waste, healthcare organizations not only enhance the utilization of resources but also curtail costs and elevate the overall quality of care delivery. 

 

Six Sigma model  

The Six Sigma model is a robust and widely adopted healthcare method for improving processes and reducing mistakes (9). It was first used in manufacturing but is now used in healthcare to make processes more consistent and improved by finding and fixing mistakes and inefficiencies (9).  

An example is when a hospital is concerned about the accuracy of medication dosing for pediatric patients, a Six Sigma team might include: indicating the problem, gathering data on mistakes regarding dosing, and finding out why the mistakes happened. The strategy may encompass the implementation of standardized dosing protocols, refining staff training programs, and closely monitoring the medication administration process to ensure that mistakes are eliminated. 

Six Sigma uses a framework called DMAIC (Define, Measure, Analyze, Improve, Control) to make improvements. This framework utilizes data-driven tools to discern problems, quantify their origins, develop practical solutions, and institute control mechanisms to sustain improvements (11). Through this systematic journey, healthcare organizations position themselves to deliver care of elevated quality, curtail costs, and bolster patient safety.  

 

TeamSTEPPS model 

TeamSTEPPS, which stands for Team Strategies and Tools to Enhance Performance and Patient Safety, is a teamwork and communication model designed explicitly for healthcare settings (4). Developed by the U.S. Department of Defense and the Agency for Healthcare Research and Quality (AHRQ), TeamSTEPPS focuses on improving patient safety by enhancing team collaboration, communication, and decision-making among healthcare professionals (4). 

One key element of TeamSTEPPS is using structured communication techniques to prevent errors and misunderstandings. For instance, during patient handoffs from one healthcare provider to another, TeamSTEPPS emphasizes using a structured tool like SBAR (Situation, Background, Assessment, Recommendation) to convey critical information succinctly and accurately. This ensures that essential patient details are noticed, reducing the risk of adverse events (18). 

In a surgical team scenario, TeamSTEPPS principles can be applied to improve teamwork and communication among surgeons, nurses, and anesthesiologists. The model encourages briefings before procedures to set clear objectives, huddles during surgery to address emerging issues, and debriefings afterward to reflect on the process and identify areas for improvement. By fostering a culture of open communication and mutual respect, TeamSTEPPS contributes to safer, more efficient healthcare delivery (4). 

 

Quiz Questions

Self Quiz

Ask yourself...

  1. How can healthcare organizations determine which QI model suits their specific challenges or improvement goals? 
  2. How do QI models emphasize data collection and analysis, and why is this critical in healthcare? 
  3. Can you imagine a real-world scenario where the Lean Six Sigma framework can successfully improve healthcare processes and outcomes? 
  4. What are some emerging trends or innovations in QI models and methodologies, and how might they shape the future of healthcare quality improvement? 

IOM Six Domains of Patient Care 

The Institute of Medicine (IOM), now known as the National Academy of Medicine, introduced the Six Domains of Quality in Healthcare as a framework to assess and improve the quality of patient care (14). These domains, introduced in 2001, encompass various aspects of care delivery and patient experience, helping healthcare organizations and providers identify areas for improvement (14). The domains serve as pillars for assessing the different dimensions of care delivery, ensuring that healthcare organizations and providers address the holistic needs of patients (14).  

 

Definitions  

The Six Domains of Patient Care are essential for providing high-quality healthcare. See definitions of each of the IOM's six domains of patient care below. 

  • Safe: Safety is the foundational domain, emphasizing the importance of reducing the risk of patient harm. This includes preventing medical errors, preventing infections, and ensuring the safe administration of medications. Healthcare organizations implement safety protocols and engage in continuous monitoring to minimize risks (14). 
  • Effective: Effective care ensures that patients receive evidence-based treatments and interventions that result in the desired outcomes. It involves using the best available scientific knowledge to make informed decisions about patient care avoiding unnecessary or ineffective treatments (14). 
  • Patient-Centered: Patient-centered care focuses on individualizing healthcare to meet each patient's unique needs and preferences. It involves respecting patients' values and preferences, engaging them in shared decision-making, and delivering care with empathy and compassion (14). 
  • Timely: Timely care emphasizes reducing delays in healthcare delivery. It includes providing care promptly and avoiding unnecessary waiting times for appointments, tests, and treatments. Timely care is especially critical in emergencies (14). 
  • Efficient: Efficiency in healthcare means maximizing resource utilization and minimizing waste while providing high-quality care. This domain emphasizes streamlining processes, reducing unnecessary costs, and optimizing healthcare resources (14). 
  • Equitable: Equitable care underscores the importance of providing healthcare that is fair and just, regardless of a patient's background, socioeconomic status, or other factors. It aims to eliminate healthcare access and outcomes disparities among different patient populations (14). 

 

Measures 

Measures in the context of the Institute of Medicine (IOM) six domains of patient care refer to the metrics and indicators used to assess and evaluate the quality of care provided in each domain. According to (14), the measures below are essential for monitoring and improving healthcare services. See details below. 

  • The "Safe" domain measures focus on tracking and reducing adverse events and medical errors. Key indicators include rates of medication errors, hospital-acquired infections, falls, and complications from procedures. Safety measures also assess the implementation of safety protocols, such as hand hygiene compliance and patient identification bracelets. 
  • Measures in the "Effective" domain assess how evidence-based practices and treatments are utilized. These measures include adherence to clinical guidelines, appropriate use of medications, and the success rates of medical interventions. Additionally, outcomes such as patient recovery, remission, or improvement are indicators of the effectiveness of care. 
  • The "Patient-Centered" domain focuses on assessing the patient’s experience and satisfaction with care. Patient surveys and feedback are standard measures, evaluating aspects like communication with healthcare providers, involvement in decision-making, and overall satisfaction with the care received. Healthcare organizations also measure shared decision-making and respect for patient preferences. 
  • Measures related to the "Timely" domain evaluate the efficiency of healthcare delivery. Key metrics include waiting times for appointments, diagnostic tests, and procedures. Additionally, measures track the timely delivery of urgent care and the avoidance of unnecessary delays in treatment. 
  • Efficiency measures aim to quantify resource utilization and the reduction of waste in healthcare. Metrics may include the cost of care per patient, length of hospital stays, and resource allocation efficiency. Improvement in resource utilization and cost-effectiveness are vital indicators of efficiency. 
  • Measures within the "Equitable" domain assess disparities in healthcare access and outcomes among different patient populations. Healthcare utilization and outcomes data are stratified by demographics, socioeconomic status, race, and ethnicity to identify and address inequities. Key indicators include access to preventive care, healthcare utilization rates, and health outcomes across various demographic groups. 
Quiz Questions

Self Quiz

Ask yourself...

  1. How can healthcare providers ensure their care aligns with patients' values, preferences, and cultural backgrounds? 
  2. What challenges might patients face in accessing healthcare services, and how can healthcare organizations improve access for all patients? 
  3. What are the potential consequences of poor care coordination among healthcare providers, and how can interdisciplinary teams work together to enhance coordination? 
  4. Why must healthcare organizations continually assess and improve the quality of care they provide, and what mechanisms can be implemented to support ongoing improvement efforts? 

Nursing Quality Indicators 

According to (5), nursing quality indicators are essential metrics used to evaluate and improve the quality of nursing care in healthcare settings. These indicators provide valuable insights into nursing practice and patient outcomes, helping healthcare organizations and nursing staff deliver safe, effective, patient-centered care. Let's delve into some key nursing quality indicators and their significance below. 

 

Patient Falls 

Patient falls are a critical quality indicator in nursing care since they can result in severe injuries and complications for patients (5). As a result, healthcare organizations measure and monitor the rate of patient falls to identify trends and implement preventive measures.  

For example, when a hospital notices an increase in the rate of falls among elderly patients in a particular unit, they may introduce interventions such as nonslip flooring, improved lighting, and patient education as fall prevention strategies to reduce the incidence of falls. 

 

Medication Administration Errors 

Ensuring accurate medication administration is crucial in nursing practice because medication errors can lead to adverse events, including patient harm or death (5). Nursing quality indicators related to medication administration errors include the rate of medication errors and adherence to medication reconciliation processes (5). For instance, nurses are encouraged to verify patient allergies and cross-check medication orders to prevent errors. If there is an increase in medication errors in a healthcare facility, it may prompt a review of medication administration protocols and additional staff training.

 

Pressure Ulcers (Bedsores) 

Pressure ulcers are a quality indicator of patient skin integrity since they develop when patients remain immobile for extended periods (5). As a result, healthcare organizations measure the incidence and prevalence of pressure ulcers as an indicator of the quality of nursing care (5).  

 

Patient Satisfaction 

Patient satisfaction is a patient-centered nursing quality indicator since it reflects the overall patient experience and perception of care (5). Surveys and feedback mechanisms are used to measure patient satisfaction. For example, a scenario might involve patients receiving post-discharge surveys that assess various aspects of their hospital experience, including nurse responsiveness, communication, and pain management. Healthcare organizations can use this feedback to identify areas for improvement and enhance patient-centered care. 

In summary, nursing quality indicators encompass a range of metrics that evaluate nursing care quality, patient safety, and patient experiences. By monitoring and responding to these indicators, healthcare organizations and nursing staff can continuously improve their quality of care, leading to better outcomes and increased patient satisfaction (5). 

Quiz Questions

Self Quiz

Ask yourself...

  1. Why is data collection critical in nursing quality improvement efforts? 
  2. What types of data should nurses prioritize collecting to assess patient safety? 
  3. How can nurses ensure the accuracy and reliability of the data they collect for quality improvement purposes? 
  4. What challenges might nurse face when collecting patient-related data, and how can these challenges be overcome? 

Data Collection 

Quality improvement data collection is a critical component of healthcare quality initiatives, providing the necessary information to assess the current state of care, identify areas for improvement, and monitor progress over time (2). Accurate and meaningful data collection enables healthcare organizations to make informed decisions, implement evidence-based interventions, and ultimately enhance patient outcomes. Let's explore the methods of data collection below. 

  • Clinical Outcome Collection: Clinical outcome data collection is essential for assessing the effectiveness of healthcare interventions (2). For example, consider a scenario where a hospital is implementing a quality improvement project to reduce surgical site infections (SSIs) following orthopedic surgeries. Data collection would involve tracking the number of SSIs occurring over a specific period and collecting information on patient characteristics, surgical techniques, and post-operative care protocols. By analyzing this data, the healthcare team can identify trends, risk factors, and areas for improvement, ultimately leading to targeted interventions to reduce SSIs. 
  • Patient Satisfaction Survey Data Collection: Patient satisfaction surveys are valuable tools for collecting data on patient experience (2). A primary care clinic that aims to improve patient satisfaction may administer surveys to patients after each visit, asking about aspects of care such as communication with healthcare providers, wait times, and overall experience. The collected data can reveal areas of strength and areas requiring improvement. For instance, if survey results consistently indicate longer-than-desired wait times, the clinic can adjust scheduling practices or implement strategies to reduce wait times and enhance patient satisfaction. 
  • Process Measures Data Collection: Process measure data collection focuses on evaluating the efficiency and effectiveness of healthcare processes (2). For instance, in a medication reconciliation scenario, a healthcare organization might collect data on the accuracy and completeness of medication lists during care transitions. By tracking the frequency of medication reconciliation discrepancies, they can identify process inefficiencies and implement standardized protocols for reconciliation, leading to safer care transitions and reduced medication errors. 
  • Adverse Event Reporting Data Collection: Adverse event reporting is a crucial mechanism for collecting data on incidents that result in patient harm or near misses (2). For example, consider a scenario where a nurse administers the wrong medication dose to a patient but catches the error before any harm occurs. Reporting this near-miss event allows the healthcare organization to investigate the root causes, implement preventive measures, and share lessons learned with the care team to prevent similar incidents in the future. 

 

Types of Data 

Data types play a crucial role in understanding the current state of care, identifying areas for improvement, and implementing evidence-based interventions (2). Let’s explore the different types of data used in quality improvement below. 

  • Quantitative Data: Quantitative data involves numerical measurements and is particularly useful for assessing the frequency and extent of specific events or outcomes (2). For instance, in a hospital's quality improvement project focused on reducing hospital-acquired infections, the team collects quantitative data on the number of infections over time, allowing them to track trends and measure the impact of interventions, such as hand hygiene protocols or disinfection practices. 
  • Qualitative Data: Qualitative data provides insights into the "why" and "how" behind healthcare processes and patient experiences (2). This data type is collected through interviews, focus groups, and open-ended surveys. For example, in a primary care setting aiming to improve patient satisfaction, qualitative data may be collected through patient interviews to gather in-depth information about their perceptions of care. Qualitative data can uncover nuances and provide valuable context to complement quantitative findings (2). 
  • Patient-Reported Data: Patient-reported data includes information directly provided by patients about their health, symptoms, experiences, and preferences. Patient-reported outcome measures (PROMs) and patient-reported experience measures (PREMs) are standard data collection tools. In a scenario involving chronic disease management, patients with diabetes may be asked to complete a PROM assessing their quality of life and symptom management. This data helps healthcare providers tailor care plans to individual patient needs and preferences (2). 
  • Process Data: Process data track the steps and activities involved in healthcare delivery to help assess the efficiency and effectiveness of care processes. For example, in a surgical quality improvement initiative, process data may include the time from patient admission to surgery, surgical team checklist completion, and adherence to anesthesia protocols. By collecting and analyzing process data, healthcare organizations can identify bottlenecks and areas for improvement in care delivery processes. 

In summary, quality improvement data collection relies on various data types, including quantitative, qualitative, patient-reported, and processed data. Each data type contributes to a comprehensive understanding of healthcare quality and supports evidence-based decision-making to enhance patient care and outcomes. 

 

Identification Stage  

The identification stage for quality improvement data collection is a critical initial phase where healthcare organizations and teams define what data to collect, why it is relevant, and how it aligns with their quality improvement goals (23). This stage is essential for ensuring meaningful data collection efforts will lead to actionable insights. Let's explore the identification stage in more detail. 

  • Defining Objectives and Goals: During this stage, healthcare organizations must clearly define the objectives and goals of their quality improvement initiative (23). For instance, a hospital aiming to reduce readmission rates for heart failure patients may set a specific goal of reducing readmissions by 20% within the following year.  
  • Selecting Relevant Metrics: Identifying the right metrics and data points is crucial, and organizations should choose metrics that directly relate to their quality improvement goals (23). Continuing with the example of reducing heart failure readmissions, relevant metrics might include the number of heart failure patients readmitted within 30 days, the reasons for readmission, and patient characteristics. By selecting these metrics, the organization ensures that data collection efforts are aligned with their specific improvement goal. 
  • Determining Data Sources: Healthcare organizations must identify where the necessary data will be sourced (23). This may involve looking at electronic health records, claims data, patient surveys, or other sources. For instance, to collect data on heart failure readmissions, the hospital may extract relevant information from electronic health records, including admission and discharge dates, diagnosis codes, and patient demographics. 
  • Creating Data Collection Protocols: Establishing clear data collection protocols is essential for consistency and reliability (23). Healthcare teams should define how data will be collected, who will be responsible for data collection, and the frequency of data collection. For example, in a hospital project aiming to improve hand hygiene compliance, data collection protocols might specify that trained observers will monitor hand hygiene practices at random intervals and record their findings on standardized forms. 

By carefully navigating the identification stage, healthcare organizations ensure that their quality improvement data collection efforts are purposeful and aligned with their goals. This sets the stage for collecting meaningful data to drive evidence-based decisions and interventions to enhance healthcare quality. 

 

Gathering Stage  

The gathering stage of quality improvement data collection is crucial for healthcare organizations to collect the identified data based on their quality improvement objectives and goals (23). This stage involves systematically collecting data from various sources and often requires careful planning and coordination to ensure data accuracy and completeness. Let's delve into the gathering stage in detail below. 

  • Data Collection Methods: To gather data, healthcare organizations must determine the most suitable methods for collecting the identified data, which may involve a combination of electronic health records, patient surveys, direct observations, and administrative databases (23). For example, in a quality improvement project aimed at reducing hospital readmissions, data may be collected by reviewing electronic health records to track patient outcomes, conducting patient surveys to gather feedback on discharge instructions, and analyzing administrative data to identify trends in readmission rates. 
  • Ensuring Data Accuracy and Consistency: Data accuracy is critical in the gathering stage, and organizations must implement procedures to collect data consistently and without errors (23). For instance, if a healthcare facility is collecting data on medication administration, nurses may use standardized protocols to accurately record medication administration times and doses. Regular training and quality checks may also be implemented to maintain data accuracy. 
  • Timely Data Collection: Timeliness is another important aspect of the gathering stage, and data should be collected promptly to ensure it is current and relevant for analysis and decision-making (23). In a scenario involving tracking patient outcomes, healthcare teams may set specific intervals for data collection, such as collecting post-surgical complication data daily or weekly, depending on the project's requirements. 
  • Data Security and Privacy: Protecting patient data is a paramount concern in healthcare. As a result, healthcare organizations must adhere to strict privacy and security protocols during the gathering stage to ensure that patient information is handled confidentially and complies with applicable laws and regulations, such as the Health Insurance Portability and Accountability Act (HIPAA) (23). For example, when collecting patient-reported data, organizations may anonymize responses to protect patient identities and comply with privacy regulations. 

By effectively managing the gathering stage, healthcare organizations can ensure that they collect accurate, timely, and secure data that will serve as the foundation for subsequent analysis and quality improvement efforts. 

 

Analysis stage  

The analysis stage for quality improvement data collection is a critical phase where collected data is processed, examined, and transformed into actionable insights. This stage involves various analytical techniques and tools to identify patterns, trends, and areas for improvement (2). Let's explore the analysis stage in detail below. 

  • Descriptive Analysis: Descriptive analysis is the initial step in data analysis, focusing on summarizing and presenting data meaningfully (2). For example, in a quality improvement project aimed at reducing patient wait times in an emergency department, an analysis may involve calculating and displaying key statistics, such as average wait times, 95th percentile wait times, and the distribution of wait times (2). These descriptive statistics provide an overview of the current situation and help identify areas that need attention. 
  • Root Cause Analysis (RCA): Root cause analysis is a critical aspect of the analysis stage, as it helps pinpoint the underlying causes of issues or problems (2). In our scenario, if the analysis reveals prolonged wait times in the emergency department, RCA may involve a thorough investigation into the factors contributing to the delays. Potential root causes include staffing shortages, inefficient triage processes, or bottlenecks in diagnostic testing. Identifying these root causes is essential for developing effective interventions. 
  • Statistical Analysis: Statistical analysis plays a vital role in quality improvement by examining the relationships between variables and testing hypotheses (2). In reducing hospital readmissions, statistical analysis may be used to identify factors associated with readmission risk. For example, healthcare teams can use logistic regression to analyze patient data to determine which variables, such as comorbidities or medication adherence, are statistically significant predictors of readmission risk. This information can guide the development of targeted interventions for at-risk patients. 
  • Benchmarking: Benchmarking involves comparing an organization's performance data with industry standards or best practices to identify performance gaps (2). When a hospital is looking to improve patient satisfaction, benchmarking may involve comparing its patient satisfaction scores to those of similar hospitals or national averages. Identifying areas where the hospital falls behind benchmarks can inform strategies for improvement, such as implementing best practices from higher-performing institutions. 

The analysis stage is critical for transforming raw data into actionable insights and understanding healthcare quality factors (2). Through descriptive analysis, root cause analysis, statistical techniques, and benchmarking, healthcare organizations can gain valuable insights that drive evidence-based decisions and interventions to improve care quality (6). 

 

Benchmarking 

The benchmarking stage in quality improvement data collection is a crucial phase where healthcare organizations compare their performance against established benchmarks or best practices (1). This gives healthcare organizations a clear understanding of their position relative to recognized standards and allows them to effectively identify areas for improvement, prioritize, and focus their improvement efforts (5). Let's delve into the benchmarking stage in detail below. 

  • Defining Benchmarks: In the benchmarking stage, healthcare organizations must define the benchmarks or standards against which they will measure their performance. These benchmarks can be internal (comparing current performance to historical data) or external (comparing to industry standards, best practices, or similar organizations) (1). For example, a primary care clinic seeking to improve appointment scheduling efficiency may choose to benchmark its appointment wait times against industry benchmarks for acceptable wait times. 
  • Collecting Comparative Data: Gathering data that allows for a meaningful comparison is critical in benchmarking, so healthcare organizations must collect data from relevant sources to measure their performance against the chosen benchmarks (1). Continuing with the appointment scheduling example, the clinic may collect data on the time it takes to schedule an appointment, the number of scheduling errors, and patient feedback. This data is then compared to industry benchmarks or best practices. 
  • Identifying Performance Gaps: The benchmarking process reveals gaps or disparities between an organization's performance and the benchmarks to highlight improvement areas (1). For instance, if the clinic discovers that its appointment wait times are significantly longer than industry benchmarks, this identifies a performance gap that needs to be addressed to enhance patient access and satisfaction. 
  • Developing Improvement Strategies: Healthcare organizations can develop targeted improvement strategies once performance gaps are identified. These strategies are based on evidence from the benchmarking process and aim to align performance with or exceed established benchmarks (1). In our scenario, the clinic may implement strategies such as optimizing appointment scheduling processes, enhancing staff training, or using technology to improve scheduling efficiency. 

Quiz Questions

Self Quiz

Ask yourself...

  1. Why is data collection a crucial step in the quality improvement process? 
  2. What types of data are typically collected during the data collection stage of quality improvement? 
  3. How do you determine which data points are relevant to your quality improvement project? 
  4. What methods and tools can be used to collect data accurately and efficiently? 

Change Models in Healthcare 

Change models are essential frameworks used in healthcare, including nursing, to guide and manage the effective implementation of quality improvement initiatives (15). These models offer structured approaches to initiate, plan, execute, and sustain changes in healthcare practice (15). Let’s discuss some prominent change models used in nursing quality improvement below. 

  • Kotter's 8-Step Change Model: Developed by Dr. John Kotter, this model emphasizes the importance of creating a sense of urgency, building a guiding coalition, and sustaining the change (15). For instance, in a nursing scenario focused on reducing hospital-acquired infections, the 8-step model would involve creating urgency by highlighting the impact of infections on patient safety, assembling a coalition of nurses and infection control specialists, and sustaining change by monitoring infection rates over time and continually reinforcing hygiene protocols. 
  • Lewin's Change Management Model: Lewin's model consists of three stages: unfreezing, changing, and refreezing (15). Let's consider implementing a new electronic health record (EHR) system in nursing. Nurses first "unfreeze" by acknowledging the need for a new system and undergoing training. Then, they "change" by adopting the EHR and adjusting workflows. Finally, they "refreeze" by becoming proficient and maintaining the new system's use as a standard practice. 
  • PDSA Cycle (Plan-Do-Study-Act): This model emphasizes iterative cycles of planning, implementing, observing, and adjusting (15). For instance, if a nursing unit aims to improve patient handoffs, they might "plan" by identifying handoff best practices, "do" by implementing changes, "study" by assessing the impact on patient outcomes, and "act" by making further refinements based on their findings. This continuous cycle allows for gradual, data-driven improvements. 
  • ADKAR Model: The ADKAR model focuses on individual change management, and this could apply to a scenario where nurses are adopting new pain management protocols (15). Nurses would first need awareness of the change (A), followed by desire (D) to participate, knowledge (K) of how to implement the new protocols, ability (A) to do so, and reinforcement (R) to sustain the change over time. 

In summary, change models provide structured approaches to drive quality improvement initiatives in nursing, and by applying these models, nurses and healthcare organizations can systematically plan, implement, and evaluate changes to enhance patient care, safety, and outcomes (15).

Quiz Questions

Self Quiz

Ask yourself...

  1. Why are change models essential in nursing quality improvement initiatives? 
  2. What is the primary purpose of creating a sense of urgency in change models like Kotter's 8-Step model? 
  3. How does Lewin's Change Management Model address the need to "unfreeze" existing practices in nursing before implementing change? 
  4. Why is individual change management crucial in nursing practice, as the ADKAR model emphasizes? 

Implementing Change 

Implementing changes for quality improvement in nursing is a multifaceted process that requires careful planning, effective communication, and the engagement of healthcare professionals at all levels. According to (15), successful implementation ensures that desired changes are integrated into daily nursing practice, improving patient outcomes. Let’s explore key strategies and considerations for implementing changes in nursing quality improvement below. 

  • Engage Interdisciplinary Teams: According to (15), collaborative engagement is crucial when implementing changes in nursing practice, and healthcare organizations should assemble interdisciplinary teams that include nurses, physicians, administrators, and other stakeholders. For example, in a scenario involving the adoption of a new pain management protocol, nurses can collaborate with physicians to ensure the consistent application of evidence-based pain management practices. This team approach facilitates a shared understanding of the change and fosters buy-in from all parties. 
  • Effective Communication: Clear and consistent communication is essential during the implementation phase, so nurses should communicate the rationale behind the change, its expected benefits, and the specific steps involved (15). For example, suppose a hospital is transitioning to a new electronic health record system. In that case, nurses can attend training sessions to understand its features and communicate effectively with patients about how it will enhance their care. This ensures that all stakeholders are informed and can adapt to the change seamlessly. 
  • Training and Education: Providing adequate training and education is critical to equip nursing staff with the knowledge and skills to implement the change effectively (15). In the case of introducing a new wound care protocol, nurses would require training on the updated practices, wound assessment techniques, and the use of new wound care products. In addition to initial training, ongoing education would ensure that nursing staff stay current with best practices to provide quality care confidently. 
  • Continuous Monitoring and Feedback: According to (15), implementing change is an ongoing process that requires constant monitoring and feedback since feedback mechanisms allow for adjustments and refinements to the change process. As a result, nursing quality improvement initiatives benefit from the regular collection and analysis of data to assess the impact of the change. For example, suppose a hospital introduces a sepsis screening tool. In that case, nurses can track the number of patients screened, identify missed cases, and evaluate whether early interventions have reduced sepsis-related mortality rates. By engaging interdisciplinary teams, fostering effective communication, providing training and education, and implementing continuous monitoring and feedback mechanisms, nurses can successfully implement changes that improve the quality of patient care and enhance overall healthcare outcomes (8). 
Quiz Questions

Self Quiz

Ask yourself...

  1. Why is it crucial for nursing teams to engage in interdisciplinary collaboration when implementing changes for quality improvement? 
  2. How can effective communication strategies help nursing staff understand the purpose and benefits of a proposed change in healthcare practice? 
  3. What role does ongoing training and education play in ensuring that nursing staff are well-prepared to implement and sustain changes in their practice? 
  4. What methods can be employed to gather feedback from nursing staff while implementing a new practice or protocol? 

Evaluating Change 

Evaluating change for quality improvement in nursing is a critical phase that involves assessing the impact and effectiveness of implemented changes on patient care outcomes, safety, and the overall quality of healthcare services. According to (15), rigorous evaluation ensures that improvements are sustained, and necessary adjustments are made. Let’s explore key strategies and considerations for evaluating changes in nursing quality improvement below. 

  • Establishing Clear Evaluation Metrics: To evaluate change effectively, it is essential to define clear and measurable evaluation metrics, and according to (15), these metrics should align with the specific objectives of the change initiative. For example, suppose a nursing unit has introduced a new hand hygiene protocol to reduce hospital-acquired infections. In that case, evaluation metrics may include the number of infections before and after the change, adherence to hand hygiene guidelines, and patient satisfaction scores related to cleanliness and infection prevention. 
  • Data Collection and Analysis: Data collection is a fundamental component of the evaluation process, and nursing teams should collect relevant data using standardized methods and tools (15). In our scenario, data on infection rates can be collected regularly, and statistical analysis can be performed to determine whether the change has had a statistically significant impact. Nurses can then use run charts or control charts to visualize trends in infection rates over time, allowing for early detection of any potential issues. 
  • Patient and Staff Feedback: Patient and nursing staff feedback is invaluable in evaluating change since patients' perspectives on the quality of care and their experiences following the change can provide insights into the initiative's effectiveness (15). Additionally, nursing staff can provide feedback on the practicality and feasibility of the new practices. For instance, nursing staff may suggest further improvements in infection control procedures. 
  • Sustainability and Continuous Improvement: Evaluating change is not solely about assessing immediate outcomes but also ensuring sustainability and continuous improvement. According to (15), nursing teams should determine whether the positive effects of the change are maintained over time and whether there is room for further refinement. For example, when a nursing unit has reduced infection rates, regular audits and monitoring should continue to ensure sustained compliance with hygiene protocols. 
Quiz Questions

Self Quiz

Ask yourself...

  1. Why must nursing teams establish clear and measurable evaluation metrics when assessing the impact of change in healthcare practice? 
  2. How can nurses effectively collect and analyze data to evaluate the success of a change in their nursing practice? 
  3. What role does patient feedback play in evaluating the impact of a change on the quality of nursing care, and how can this feedback be gathered and utilized? 
  4. How can nursing staff engage in ongoing self-assessment to determine their practice changes' effectiveness and identify improvement areas? 
Quiz Questions

Self Quiz

Ask yourself...

  1. What specific infection prevention measures should nurses prioritize in their daily practice to reduce hospital-acquired infections, and why are these measures effective? 
  2. What are the primary goals of a quality improvement project to reduce hospital-acquired infections, and how can nursing staff contribute to achieving these goals? 
  3. Why is continuous monitoring and evaluation crucial in quality improvement projects, and how can nursing staff use data to drive ongoing improvements in patient care quality? 
  • Enhancing Medication Safety: Medication errors can have severe consequences for patients (6). A quality improvement project may target medication safety by introducing barcode scanning systems for medication administration, implementing double-check procedures for high-risk medications, and providing ongoing training to nursing staff. The project's effectiveness can be assessed by monitoring the number of medication errors reported and verifying that the new safety measures reduce the occurrence of such errors. For example, a nursing team could reduce the incidence of wrong-patient medication administration by implementing barcode scanning during medication administration. 
Quiz Questions

Self Quiz

Ask yourself...

  1. How can nurses ensure that barcode scanning systems and double-check procedures are effectively integrated into their daily workflow in medication safety improvement projects? 
  2. What potential challenges and barriers can nurse units encounter when implementing medication safety improvements, and how can these challenges be addressed? 
  • Improving Nurse-to-Patient Ratios: Adequate nurse staffing levels are crucial for patient safety and quality of care (6). A quality improvement project may involve adjusting nurse-to-patient ratios based on patient acuity levels, introducing workload management tools, and conducting regular staffing needs assessments. In this case, the project's success can be measured by tracking patient outcomes, nurse workload, and patient satisfaction scores. For example, a nursing unit could reduce nurse burnout and improve patient care by optimizing staffing ratios during peak hours. 
Quiz Questions

Self Quiz

Ask yourself...

  1. Why is it important to regularly assess and adjust nurse-to-patient ratios in a healthcare setting, and what strategies can nurse leaders employ to optimize staffing levels? 
  2. In a quality improvement project focused on nurse-to-patient ratios, what key factors should nurse leaders consider when determining staffing needs during different shifts and patient acuity levels? 
  • Enhancing Discharge Planning and Care Transitions: Effective care transitions from the hospital to home or other healthcare settings are essential to preventing readmissions and ensuring continuity of care (6). A quality improvement project may focus on improving the discharge planning process, including patient education, medication reconciliation, and post-discharge follow-up. Success can be assessed by monitoring readmission rates and patient-reported experiences. For example, a nursing team could work on reducing hospital readmissions by ensuring that patients receive thorough discharge instructions and have access to follow-up care. 
Quiz Questions

Self Quiz

Ask yourself...

  1. What steps can nurse teams take to enhance the discharge planning process and ensure seamless care transitions for patients moving from the hospital to home care? 
  2. What strategies can nurse teams employ to ensure that patient education during discharge planning is effective and leads to better patient outcomes and satisfaction? 

The above examples illustrate the diverse range of quality improvement projects in nursing, each addressing specific challenges to enhance patient safety and care quality.

 

 

Quiz Questions

Self Quiz

Ask yourself...

  1. Why is continuous monitoring and evaluation crucial in quality improvement projects, and how can nursing staff use data to drive ongoing improvements in patient care quality? 
  2. What are the primary goals and objectives of QI models, and how do they contribute to the overall quality of healthcare? 

Conclusion

In conclusion, this course provides essential knowledge and skills valuable for nurses aiming to deliver high-quality, safe, patient-centered care. Quality improvement in nursing is not merely a theoretical concept but a practical approach that can be applied to various aspects of healthcare, and one critical aspect to remember is the importance of interdisciplinary collaboration. As frontline caregivers, nurses must collaborate with physicians, administrators, pharmacists, and other healthcare professionals to drive improvements in healthcare delivery.  

As nurses continue to play a pivotal role in healthcare delivery, the knowledge and skills gained from this course will empower them to lead and actively participate in quality improvement initiatives. By applying quality improvement principles, nurses can contribute to better patient experiences, patient outcomes, and overall healthcare quality. 

 

Final Reflection Questions 
  1. What have you learned from this course? 
  2. Why is interdisciplinary collaboration essential for nurses to effectively implement quality improvement initiatives in healthcare settings, and how can nurses foster collaboration among healthcare professionals? 
  3. How does the concept of continuous learning and adaptation align with the dynamic nature of healthcare, and what strategies can nurses employ to stay current with evolving best practices and guidelines? 
  4. In what ways does Quality Improvement benefit both healthcare providers and patients?  
  5. What are the potential challenges in implementing QI initiatives in a healthcare organization? 
  6. In what ways has QI in healthcare become intertwined with the broader goals of healthcare reform, such as improving patient outcomes and reducing healthcare costs? 
  7. What role does leadership play in the effective implementation of QI models? 
  8. How can leaders promote a culture of continuous improvement within healthcare organizations? 
  9. How do QI models facilitate interdisciplinary collaboration among healthcare professionals to drive improvements in patient care? 
  10. What challenges might healthcare organizations face when attempting to adopt and sustain QI models, and how can these challenges be overcome? 
  11. How does the "testing and learning" concept in the PDSA cycle align with the principles of evidence-based practice in healthcare? 
  12. In what ways do QI models promote patient-centered care and patient safety, and can you provide examples of tangible improvements in these areas achieved through QI initiatives? 
  13. How can the Six Sigma model contribute to the reliability and consistency of healthcare processes? 
  14. Safe: What steps can healthcare organizations take to minimize the risk of medical errors and adverse events? 
  15. Practical: How do healthcare providers ensure that evidence-based treatments and interventions lead to positive patient outcomes? 
  16. Patient-centered: Why is it important to involve patients in their care decisions, and how can healthcare professionals effectively engage patients in the decision-making process? 
  17. Timely: What are some key factors contributing to delays in healthcare delivery, and how can these delays be reduced to improve timeliness? 
  18. Efficient: How can healthcare processes and workflows be streamlined to enhance efficiency and reduce waste? 
  19. Equitable: What are some barriers to achieving healthcare equity, and how can healthcare organizations address these disparities? 
  20. How can nurses actively involve patients in data collection to enhance patient-centered care? 
  21. What tools or technologies are available to streamline data collection processes in nursing practice? 
  22. How can nurses effectively collaborate with interdisciplinary teams to gather comprehensive data for quality improvement initiatives? 
  23. What strategies can nurses employ to maintain patient privacy and confidentiality while collecting sensitive healthcare data? 
  24. What methods can nurse use to analyze and interpret the data they collect to identify areas for improvement? 
  25. Why must nurses regularly review and assess the data they collect to drive continuous quality improvement in healthcare settings? 
  26. Regarding patient falls, what strategies can healthcare organizations implement to reduce the incidence of patient falls, and how can nursing staff actively contribute to fall prevention efforts? 
  27. How can nurses ensure the accurate and safe administration of medications, and what measures can be taken to minimize medication errors? 
  28. What are the key nursing practices and interventions that can prevent the development of pressure ulcers in hospitalized patients, and how can nursing staff collaborate to achieve this goal? 
  29. Why is patient satisfaction an important nursing quality indicator, and what actions can nurses take to enhance the overall patient experience? 
  30. What impact do nurse-to-patient staffing ratios have on the quality of nursing care, and how can healthcare organizations ensure safe nurse staffing levels? 
  31. How can nurses enhance patient education to promote better understanding and self-management of their health conditions? 
  32. How can you ensure that the data collected is reliable and valid? 
  33. What role does standardization play in data collection for quality improvement? 
  34. How can you establish baseline data for comparison in your quality improvement project? 
  35. What challenges or obstacles might you encounter when collecting data for quality improvement? 
  36. How frequently should data be collected to monitor progress in a quality improvement project? 
  37. How can you involve frontline staff in the data collection to ensure accuracy? 
  38. What measures can be taken to protect patient privacy and confidentiality during data collection? 
  39. How can you analyze the data collected to identify trends or patterns? 
  40. What actions should be taken if the data collected indicates a problem or deviation from the desired outcome? 
  41. What strategies can ensure that data collection remains an ongoing and sustainable practice in healthcare quality improvement efforts? 
  42. What are the potential challenges or resistance nurses might encounter when implementing changes using these models? 
  43. How can a guiding coalition or interdisciplinary team be effectively assembled to support nursing quality improvement efforts? 
  44. What strategies can nurses employ to sustain changes and prevent reverting to previous practices once implemented? 
  45. How can nursing leaders ensure that staff have the necessary knowledge and skills to embrace the changes outlined in these models? 
  46. How can nurses use these change models to promote a culture of continuous improvement in healthcare settings? 
  47. How can nurses ensure their implementation changes align with evidence-based best practices and clinical guidelines? 
  48. What potential challenges or barriers might nurse teams encounter when trying to implement changes for quality improvement? 
  49. What strategies can address resistance to change among nursing staff and promote their active participation in the implementation process? 
  50. How can nursing leaders effectively communicate the expected outcomes and benefits of the change to gain support and commitment from their teams? 
  51. What are the advantages of using data and performance metrics to monitor the progress and impact of change implementation in nursing practice? 
  52. How can nursing staff ensure that changes are sustained and become integral to their daily practice rather than temporary modifications? 
  53. Why is it crucial to consider the sustainability of change when evaluating its long-term impact on nursing quality improvement? 
  54. What challenges or obstacles might nurse teams encounter when collecting and analyzing data for change evaluation, and how can these challenges be addressed? 
  55. How can nursing leaders encourage a culture of continuous improvement among their teams as part of the change evaluation process? 
  56. What strategies can be employed to ensure that the feedback and insights gathered during the evaluation phase are actively used to refine and optimize nursing practices? 
  57. What are the potential consequences of not conducting thorough and systematic evaluations of changes in nursing practice for quality improvement? 
  58. How can nursing staff and healthcare organizations ensure that the lessons learned from change evaluations are applied to future improvement initiatives to enhance patient care outcomes? 

 

Workplace Violence Against Nurses

Introduction   

The role of the registered nurse, while fundamentally dedicated to the care and wellbeing of patients, has long been fraught with challenges that extend beyond the complexities of medical care. One such pressing concern is workplace violence, an issue that nurses confront with alarming frequency. Recent statistics show that healthcare workers, particularly nurses, are at a higher risk for workplace violence compared to other professions.  

Given the vital role nurses play in patient care and the broader healthcare system, it is imperative to understand the scope, sources, and solutions to this pressing issue. This continuing education course is dedicated to arming nurses with the knowledge, tools, and strategies to recognize, respond to, and prevent incidents of workplace violence, thereby ensuring their safety and the uninterrupted provision of quality care. 

Workplace Violence  

Definitions 

The Occupational and Safety Health Administration (OSHA) (3) defines workplace violence (WPV for the purpose of this course) as any act or threat of physical violence, harassment, intimidation, or other threatening, disruptive behavior that occurs at the work site.  This can also include verbal, written, or acts of sabotage against an individual while they are at work. 

Workplace violence crosses all demographic barriers and is indiscriminate in who it can and does affect. Even seeing workplace violence influences morale, attendance, and the overall well-being of employees and their co-workers.  

Types of Violence  

Currently, there are four categories of workplace violence according to the American Nurses Association (5).  

1: Criminal Intent - normally involves theft from the business or employees. 

Example: Carol is working on documentation and notices a person lingering in the hallway. Carol doesn’t really think anything of it, assuming they are family members of one of the patients. Several minutes later, the person exits quickly from the supply room and down the stairs. Carol calls security to let them know, but they can’t locate the individual. After looking through the supply room, they find that several containers of wound dressing supplies are missing.  

2: Customer/client/patient - the individual becomes violent with employees while receiving services. 

Example: David was updating a family on their father’s critical condition. David could tell the family was upset, but the patient’s son seemed more frustrated than the others. During David’s explanation, the son grabbed David’s clipboard and yelled, “You’re not doing anything! You’re just letting him die!” The son then threw the clipboard at David’s head. David blocked the clipboard with his arm, receiving a rather deep cut as a result. Security became involved, and David had to go to the ER for treatment.  

3: Worker on worker - an employee bullies, attacks, or threatens another employee. 

Example: Emily was rounding when Dr. G. came onto the floor. This doctor was well known for being difficult to work with, and he always required the nurses to stand behind him in the room while he talked with his patients. Emily had one of Dr. G.’s patients today and was in the room, he asked her if the patient had ambulated. Emily told him they had not, but they planned to before and after lunch. The doctor made an audible sigh and while shaking his head at the patient said, “See…this is what I deal with every day. These nurses can’t get anything right. They’re all useless.” 

4: Personal relationship - involves a person who has an interpersonal relationship with the nurse, but no association with the nurse’s employer or the business. 

Example: Rebecca was walking to her car after work. Halfway to her car, she noticed an individual leaning against the trunk of her vehicle. Rebecca recognized this person as the someone her friend was currently dating. This person approached Rebecca aggressively and began yelling about gossiping and trying to break their relationship. Rebecca started back toward the building, hoping security was nearby, and was pursued by the female. Eventually, Rebecca made it to the building and got inside. Luckily, the door only opened with an employee badge, and Rebecca was safe. She went ahead to security.  

 

Currently, the customer/client type of workplace violence is the most prominent, especially in healthcare and toward nurses. The American Nurses Association (ANA) reports that OSHA does not require employers to implement workplace violence prevention programs, but it supplies voluntary guidelines and may cite employers for not supplying a workplace free from recognized serious hazards.  

Some states have legislated that employers develop a program while most states have advanced laws that amend existing statute for assaults of first responders by adding health care providers / nurses and/or increasing the penalty associated with such behavior. (3) 

It is worth noting that since there are, in most cases, no actual requirements for employers to provide safe work environments for nurses, preventing and dealing with WPV proves problematic. It falls on nurses to understand what constitutes WPV, how to manage it, how to cope with it, how to report it, and how to ensure action is taken and a resolution is reached when WPV occurs.  

Quiz Questions

Self Quiz

Ask yourself...

  1. In the scenarios above, should the employees report these incidents to administration at once? 
  2. How would you describe the earlier scenarios on workplace violence? 
  3. Why is it important to ask how you would find and describe workplace violence? 
  4. Can you provide any examples of workplace violence you have experienced or seen? 

Epidemiology 

Workplace violence can take many forms, and the possible varieties and scenarios are endless. Regardless of how it manifests, the effects of workplace violence are clear and widespread. It can affect productivity of employees, morale, attendance, turnover rates, quality of work, patient outcomes, and much more.  

Workplace violence can affect and involve workers, clients, customers, and visitors. WPV ranges from threats and verbal abuse to physical assaults and even homicide. In 2010, the Bureau of Labor Statistics (BLS) data reported healthcare and social aid workers were the victims of approximately 11,370 assaults by persons; a greater than 13% increase over the number of such assaults reported in 2009 (10). Almost 19% of these assaults occurred in nursing and residential care facilities alone. Unfortunately, many more incidents probably go unreported (5). 

Impact on Nurses Well-Being 

Workplace violence can take a heavy toll on nurses. These tolls can be emotional, mental, and physical as well as short-term or long-term. The seriousness of these injuries can vary widely ranging from minor upset to permanent injury and in worst cases, even death. (13) 

This harm doesn’t stop with the nurse. The effects of workplace violence may also include effects spanning the unit the nurse works on or even the entire facility. Low morale, reduced productivity, lack of trust in employers, and fear of going to work can be results of violent events occurring to even a single co-worker.  

Workplace violence can also have a financial effect on nurses and their employers related to lost time at work from injury or callouts, costs of care for treatment related to the incident (physical and/or psychological), or even legal fees. (13) 

Given that incidents of workplace violence are rapidly increasing, these impacts are expected to increase as well. It is easy to see how this harm is widespread and can potentially ripple outward into the nurse’s professional and personal life. The stress and harm do not stay at work, and can spread to the nurse’s family, social interactions, and more. 

Quiz Questions

Self Quiz

Ask yourself...

  1. How far reaching do you think workplace violence is? 
  2. Can you give some examples of how workplace violence has affected you or your co-workers? 
  3. What are some examples of how workplace violence against someone else can affect you or the patients on your unit? 

Barriers to Reporting 

One way to combat workplace violence is knowledge of its existence, its nature, and its frequency. Unfortunately, there are many factors that either prevent or discourage nurses from coming forward with reports when they are the victims of WPV.  

A study presented in a Chinese nursing journal surveyed 325 nurses. Of these nurses, 266 were spread across 165 hospitals, and these hospitals were in 72 cities.   

A total of 172 nurses (64.7%) experienced violent incidents during the past year. Of these incidents, 45.5% were reported; and the reporting rate of physical assaults (69.0%) was higher than those of verbal abuse (36.9%), threatening behavior (51.7%), and sexual harassment (60.0%). Formal reporting accounted for 25.4% (15.4% in written form and 10.0% through a computer-assisted reporting system. 

 Almost half of the nurses (49.6%) said that the hospital had no reporting system, or they were uncertain about the reporting system. For reasons of not reporting, 51.9% of the nurses were unaware of how and what types of violence to report, and 50.6% of the nurses believed that the hospital paid greater attention to patients rather than staff. (7) 

Interestingly, almost fifty percent of the nurses surveyed had limited knowledge, if any, of a reporting system available to them, while fifty percent felt the hospital favored the patients over their own employees. Combined with an actual or perceived lack of supervisory support, this encourages an environment where nurses feel powerless to protect themselves or to take proper action when threatened or harmed. 

The Minnesota Nurses Association, in August of 2022, published a press release with the results of a nursing survey on the topic of workplace violence. In this survey, ninety-seven percent of the nurses surveyed observed WPV or harassment over the previous two years.  

The top reasons cited by nurses who did not report workplace violence were lack of time due to overwork and under-staffing, cited by fifty-eight percent of respondents, and lack of action by hospital management, cited by fifty-three percent of nurses in the survey. (4) 

It would appear from these studies that many nurses feel it is futile to report incidents of workplace violence they encounter, and even if they realized an incident was reportable, they may not be aware of a way to report it or have time to do it. This perceived powerlessness and sense of futility in the face of abuse and violence will only continue to worsen unless action is taken to remove barriers to reporting and for nurses to have access to aid and support for supervisory staff. 

Quiz Questions

Self Quiz

Ask yourself...

  1. Can you think of any examples of when you or a co-worker tried to report an incident of workplace violence and were unable to? 
  2. If so, what was the barrier that prevented you from reporting? 
  3. Can you name three alternative ways to report workplace violence at your organization? 

Culture of Safety 

A commonly used phrase is “Culture of Safety”, but is there a standardized definition of what it is or could be? Many resources point to the safety of patients about medical errors, patient rights, and protecting the patient’s information, but few address the issue facing caregivers and especially nurses. However, there is no agreed-upon or standard definition of what exactly a “culture of safety” is or what it should look like.  

The American Nurses Association approaches the concept by saying, “Establishing a culture of safety in health care is essential to the security and well-being of your patients, staff, and organization. Effective nurse leaders embrace safety protocols that ensure their organization delivers a secure, protective environment that prioritizes patients and caregivers.” (12)  

Currently, there is only a single federal legislation in place about the issue. 

The only federal regulation currently in place is the General Duty Clause of the Occupational Safety and Health Act of 1970. This clause requires employers to supply a work environment free from recognized hazards that are causing or likely to cause death or serious physical harm. However, the general duty clause offers no specific recommendations about management of workplace violence.  

The Occupational Safety and Health Administration (OSHA) issued guidelines for workplace violence prevention for health care and social service workers. First issued in 1996 and later updated, the guidelines are only advisory. (1) 

It is paramount that nurses and other direct care providers accept the responsibility of creating policies and procedures within their organizations to define and enforce a work environment where violence is not tolerated and dealt with accordingly. 

There is currently a small body of research and work of the effects workplace violence has on nurses as human beings. Most of the evidence focuses on how workplace violence increases the risk nurses present to patients in the form of medical errors, staffing issues due to missed work, poor documentation, etc. 

The main body of evidence discussing how workplace violence affects nurses is noted in research around nurse burnout. A 2020 study published by the National Health Institute (10) states, “Workplace aggression is a source of extreme socio-emotional stress, which may lead to the experience of psychological strain.  

A large body of research shows that exposure to workplace aggression and violence may severely impair healthcare workers’ mental health, including symptoms of post-traumatic stress disorder, depression, and burnout.” 

This study also shows an important association with workplace aggression and violence targeting nurses and drastically increased levels of emotional exhaustion, depersonalization, and deep feelings of poor personal accomplishment. Over time, these feelings lead to complete burnout, and even worse, possibly psychological and/or physical conditions in the nurse affected.   

Even with this preliminary information and research, we still have a long way to go to show the full and far-reaching effects of workplace violence on nurses. Again, by being proactive and acting now, we as nurses can foster this research and bring to light the issues so they can be addressed. 

Quiz Questions

Self Quiz

Ask yourself...

  1. How does your organization define a “culture of safety”? 
  2. Do you agree with the definition? 
  3. How would you define a “culture of safety” from your own perspective given your experiences and challenges? 

ANA Zero Tolerance Policy 

In 2019 the American Nurses Association (ANA) (2) release a brief titled “Reporting Incidents of Workplace Violence”. In it, they discussed several issues surrounding workplace violence, barriers to its reporting, and made recommendations to healthcare organizations on strategies relating to the issues of workplace violence.  

They also set forth a “Zero Tolerance Policy on Workplace Violence”, which provided some definitions and several recommendations on how to deal with WPV. 

The introduction to the “Culture of Safety” part of this brief is as follows:  

By prioritizing, developing, and sustaining an organizational culture focused on safety, we can drive the future of healthcare to a place where patients and those who care for them are free from harm. It is not only one of many priorities but is the overriding ethical imperatives for all leaders. (9) 

The ANA also suggested a three-level prevention strategy, each with a part for the employer and the employee. Essentially, the role of the employer is gathering data, providing a “safe” work environment, non-punitive reporting, and development of programs to provide a safe work environment for nurses. The employee’s role is to take part in the implementation and evaluation of said programs.  

Unfortunately, these are only suggestions and employers do not have to implement any programs or services to protect employees against workplace violence. Also, healthcare employers do not have to report any incidents to JCAHO who consider events of workplace violence to be “sentinel events”.  

In the end, it falls on the nurses and employees directly affected by WPV to assume the charge against workplace violence, hold employers accountable, communicate with local and state legislators, and effect change to protect themselves. 

Quiz Questions

Self Quiz

Ask yourself...

  1. Considering the recommendations and guidelines set forth by these entities, do you think they are adequate or effective? Why nor why not? 
  2. How has this information changed your perception of the overall reporting process on workplace violence against nurses? 
  3. What generalizations can you make from this information on the reporting process from an employer perspective? 

Strategies to Prevent Workplace Violence 

To end nurse abuse for good, Boston-Leary says it takes every nurse speaking up and reporting abuse within an organizational culture that has an established process for allowing nurses to report abuse without fear of recrimination and then follows up with a resolution. (8) 

There are some suggested actions to help prevent and combat workplace violence in your practice setting. These actions include: 

Know the definition of abuse.  

The National Institute for Occupational Safety and Health (NIOSH) defines workplace violence as “the act or threat of violence, ranging from verbal abuse to physical assaults directed toward persons at work or on duty.” 

Agreeing on this definition is an important first step to achieving widespread acknowledgement of the distinct types of nurse abuse, particularly non-physical abuse, Boston-Leary explains. (8) 

Report Abuse 

Ask about how your workplace manages abuse reporting, whether it is in your current workplace or when you are applying for a position, Boston-Leary suggests. “Ask about how reporting abuse happens during any shift because there should be a reporting mechanism in place for everyone, even if it’s on a weekend or evening shift with no manager easily accessible to report to.” 
 
If (when) you do experience abuse, it’s essential that you speak up immediately and note any witnesses who could corroborate your description of the incident, she says. 
 
Even after you experience abuse and even if you didn’t report it, it’s important to share your past abuse with others to empower them to report abuse they experience. (8) 

Change Your Culture 

Join or meet a committee to build or strengthen zero-tolerance abuse policies. Based on ANA’s Zero Tolerance Policy on Workplace Violence, Boston-Leary suggests these crucial elements of a zero-tolerance abuse program: 

Stop violence before it starts through education to find risks and reduce vulnerabilities for workplace violence. 

Create an effective response to violence immediately after it occurs, including emergency care. 

Establish long-term responses that reduce the long-term negative effects of workplace abuse. (8)  

Communicate with your Legislator! 

Congress was considering legislation to #End Nurse Abuse by passing The Workplace Violence Prevention for Health Care and Social Service Workers Act (H.R 1195). If approved, this law would have required health care and social service industry employers to develop and implement a comprehensive workplace violence prevention plan that protects nurses and other healthcare professionals from on-the-job abuse. 
 
Boston-Leary believes legislators are very attuned to the trusted voice of nurses to share about what is happening in health care today (8). 

Quiz Questions

Self Quiz

Ask yourself...

  1. What is your organization’s primary method of reporting abuse or violence against employees? 
  2. Do you know who your local and state legislators are and how to contact them? 
  3. Are you aware of any committees or groups within your organization that actively address the issue of workplace violence? 

Nurse-led Strategies 

You can join these committees or work with your employer to create them. Collaborating with your supervisory staff and HR, you can create workflows, policies, reporting methods, and provide education on prevention of workplace violence and make a difference in your overall work environment.   

Regarding Your Legislators 

As mentioned before, 2021 Congress was considering federal legislation to end nurse abuse by passing The Workplace Violence Prevention for Health Care and Social Service Workers Act (H.R. 1195). The bill was passed by the House on April 16, 2021, but was never passed by the Senate.  

You can find your local and state legislator contact information very easily on the internet. A simple search for “how to find state legislator contact information” is a wonderful place to start. As a voting citizen, you have every right to contact them, and demand laws be created to protect you while you work.  

Below are some links to help you find elected officials: 

 

Advocate for your own safety the same way you would for your patients!  

As nurses we aren’t afraid of stepping up to bat for our patients when they need something, but we are notorious for taking a hit and letting it slide, sometimes even to our own detriment.  

We owe it to ourselves to offer that same level of advocacy to ourselves and our co-workers.  

Quiz Questions

Self Quiz

Ask yourself...

  1. How can you become an advocate for yourself or your co-workers when it comes to workplace violence? 
  2. Who is the contact in your organization for instances of workplace violence? 

Resources 

The Joint Commission supplies resources available to report and learn about how to report workplace violence. The links included are for federal, state, professional, and other resources. The direct link to this page is: 

The Joint Commission: Workplace Violence Prevention Resources 

Local law enforcement  

As a private citizen, you are protected by laws about assault, battery, and other attacks on your person. You are within your rights to call the police on events of workplace violence, especially if your life or health are threatened, or you are physically attacked. It is likely your employer will not support you in this situation due to legal implications. It is best to ask your HR department and supervisory staff how these situations should be managed if they occur. 

Legal Counsel 

Consult with a lawyer about your legal rights in situations on workplace violence and how to best manage them. Be sure to bring scenarios, information on how your employer suggests dealing with these situations, and examples of violence you have seen or have experienced.  

Educate and Train Yourself 

Learn as much as you can about recognizing and managing workplace violence. Your employer may supply these courses, and if they don’t, it may be prudent to request them. Also, you can seek outside education and training on these topics including self-defense classes and crisis management courses. 

Practice Self-Awareness 

We all have inherent beliefs, perspectives, and feelings that can prevent us from acting in certain situations. Knowing yourself and understanding possible nuances within yourself that could be a detriment to you appropriately handling a situation of workplace violence could mean the difference between prevention and becoming a victim.   

Quiz Questions

Self Quiz

Ask yourself...

  1. What training opportunities does your organization provide on management and follow-up for workplace violence? 
  2. What information would you ask local law enforcement or a legal counsel for on workplace violence? 
  3. What might someone who believes abuse against nurses is “just part of the job” do when they find themselves a victim of workplace violence? 
  4. What can you do to help individuals that may simply allow workplace violence to affect their well-being? 

Conclusion

Being an agent of change can be intimidating, terrifying, and even force us to deal with feelings and beliefs we didn’t even realize were in our way. Incidents of WPV have been rising sharply over the past several years, and there is no sign of slowing. It’s up to us as front-line workers, nurses, and co-workers to take responsibility for our own safety and work environment.  

Through cooperation and consistency, we can create and bring solutions to the workplace and hopefully one day, aid in the creation of laws that make our jobs safer for us to supply the care and support our patients need. We owe it to ourselves to take the necessary steps to show our employers it’s time to address this issue. “Be the change you wish to see in the world.” ~Mahatma Gandhi – 

Telemetry Basics - Rhythm Recognition

Introduction   

To truly understand telemetry, nurses must have knowledge about the anatomy of the heart and how electricity passes through it, how the electrocardiograph (EKG) works to receive and record the electrical activity, and how this information is transmitted via telemetry to the appropriate receiving device.

Defined as the transmission of instrumental readings by various methods such as radio waves or wires, telemetry gathers and transmits EKG readings to a central or remote monitor for interpretation and storage (71). The ability to read EKG rhythms from a variety of monitors consists of more than looking at a rhythm strip and identifying the rhythm. It consists of knowing the anatomy of the heart, how electricity travels through it and translates into the EKG we know, and what changes can happen based on injury, electrolytes, or other causes.

Heart Anatomy 101

As we know, the heart consists of four chambers, two atria—right atria (RA) and left atria (LA)—and two ventricles—right ventricle (RV) and left ventricle (LV)—working in a cycle to ensure adequate blood flow occurs. The heart receives blood from the inferior and superior vena cava (IVC and SVC) and enters the RA, moves to the RV, passes through the pulmonary artery (PA) and lungs, returns to the LA, enters the LV, and exits the heart through the aorta.

Heart cells, known as myocytes, are negatively charged, or “polarized” at rest. When these muscle cells contract, they become “depolarized” or positively charged. But how do the myocytes know when to contract? Less than 1% of the cells in the heart have a special role and name. These are known as the pacemaker cells and their role is to ensure that the heart beats. This is done through the action potential that is spontaneously created by the pacemaker cells. Some of these pacemaker cells have different speeds in depolarization, meaning that the fastest pacemaker cells are the ones controlling the speed. This will make more sense later when discussing specific cardiac rhythms (69).

Starting in the right atria, the sinoatrial node (SA node) is the primary group of pacemaker cells that determines the heart rhythm. The SA node, as well as the other pacemaker cells within the heart, progress through a rapid depolarization and repolarization process (2).

Pacemaker cells do not have a true resting potential, this means they are always in an “unstable” state to create spontaneous action potential. The action potential is the brief reversal of polarity in the cell; polarity consists of potassium (K+) in the cell with a negative charge, while sodium (Na+) and calcium (Ca++) are outside of the cell with a positive charge (2).

Starting at the beginning of the cardiac cycle the pacemaker cells always have a membrane potential or voltage—the voltage of the cellular membrane as a result of permeability and concentrations of ions inside and outside the cell—of -60 microvolts (mV). From -60mV to -50mV the channels within the cells open, leading to a slow influx of Na+ inside the cell and a slow depolarization of the cell. Once the membrane voltage has reached the minimum threshold of -50mV the Ca++ channels open, causing Ca++ to move into the cell. This is known as the rising depolarization phase. The membrane voltage reaches the peak and the next thing that happens is the falling repolarization phase. This is where the K+ channels open to return the cell to a repolarized state (2).

 

(20)

 

Once these steps have occurred, the energy is transferred to surrounding cells, and the cardiac cycle continues. However, the action potential in the other myocytes is slightly different. Myocytes have a resting potential, which is different from the pacemaker cells. The resting potential is around -90mV and these cells only start the depolarization process when stimulated by an external force. During the end of the pacemaker cell’s action potential phase, additional Ca++ is passed into the neighboring myocytes through gap junctions. The introduction of Ca++ into the cell causes a sharp rise in the membrane voltage that approaches the threshold which is -70mVs. Once that threshold has been reached, the NA+ fast channels open and a rapid depolarization occurs since Na+ is brought into the cell. The Ca++ slow channels open at -40mVs, further causing depolarization with Ca++ entering the cell (2).

At the peak of cellular depolarization, the Na+ channels close, leading to a slight repolarization through some K+ entering the cell. This is minor as the Ca++ channel is still open and continues to move K+ out of the cell. A plateau is created because of this and allows for the cell to go through two important phases. The first phase starts when the membrane voltage increases from the resting potential and continues until the plateau phase ends. This is known as the absolute refractory period and is where the myocytes relax before they can respond to additional stimuli. It prevents summation and tetanus which could lead to the heart not beating. The second phase is where additional Ca++ is pulled out of the sarcoplasmic reticulum (SR) to further push K+ out of the cell (2).

The phase ends when the Ca++ channel closes, extra Ca++ is sent back to the SR, and K+ is allowed back into the cell. The sodium/potassium pump allows Na+ to exit the cell, returning the cell to its resting potential. This rapid process occurs in every myocyte for the life of the cell. Pacemaker cells are the only cells that can generate a heartbeat. Impulses from the nervous system can increase or decrease the heart rate, but they are influencing the pacemaker cell to generate more beats, not creating them (2).

It is important to note that there are several sets of pacemaker cells within the heart. The SA node starts the process, but there are a few others spaced out along the electricity’s path to ensure that the atria and ventricles of the heart have time to fill and properly contract. The second set of pacemaker cells is the atrioventricular node (AV node) where a slight delay of 0.01-0.05 meters per second (m/s) happens to make sure that the ventricles fill up adequately. The bundle of His takes the electric impulse to the left and right bundle branches and from there, the Purkinje Fibers are triggered. These fibers have a speed of 2-4 m/s to provide enough force to eject the blood from the ventricles (69).

Correlating all of this back to telemetry, scientific development within the medical profession has allowed us to visualize this electrical activity and translate it into an effective method of diagnosing cardiac conditions such as abnormal heart rates or cell death.

Quiz Questions

Self Quiz

Ask yourself...

  1. Reflecting on what you know and what you have learned so far, what information would you consider important to know when it comes to reading EKGs or telemetry strips?
  2. What information, if any, was surprising to you in regard to the action potential of the pacemaker cells?
  3. Why do you think the pacemaker cells start with a voltage or an action potential?

Types of Telemetry

EKG

There are many ways to view cardiac rhythms now, however, the oldest method is the EKG. During the late 1700s, the Italian physician Luigi Galvani was experimenting with electricity and animal tissue. His experiments spanned at least three decades and inspired other physicians during and after his time. Using legs removed from the bodies of frogs, Galvani theorized that “animal electric fluid” enabled the muscles within the legs to move when touched by metals; according to him, this was “natural” fluid and not created as static electricity or friction is. He went on to theorize that the brain is an essential part of creating the “electric fluid” with nerves as the conductors (6).

Jumping forward to 1842, Doctor Carlo Matteucci made a significant contribution to EKGs. During his time researching electrical detection in animals, he discovered the electrical currents within the heart that accompany each heartbeat. Thirty-five years after Matteucci, Augustus Waller was able to use a capillary electrometer and electrodes to perform the first human EKG. These electrodes were placed on the chest and back of the participant and were vital in demonstrating there was electrical activity that preceded the contraction of the ventricles. William Bayliss and Edward Starling improved upon Waller’s research by using improved capillary electrometers to demonstrate triphasic cardiac electrical activity (1).

The Dutch physician most noted for creating the EKG known today was Doctor Willem Einthoven. He was inspired by Waller and those before him to improve the capillary electrometer, successfully identifying five deflections that were initially named ABCDE. Having to factor for inertia, Einthoven implemented mathematic correlation, resulting in the traditional EKG rhythm strips we use today with the letters PQRST depicted in the image below. Einthoven is also responsible for coining the word electrocardiogram or electrokardiogram in Dutch. This is where providers get the “k” in EKG from (1).

While Waller’s EKG utilized ten electrodes, Einthoven was able to condense that number to three, eliminating the right leg and the mouth electrodes. These three leads created Einthoven’s triangle; an important concept still used today and that will be discussed later. All of Einthoven's work resulted in him being awarded the Nobel Prize in Physiology and Medicine in 1924 (1).

Quiz Questions

Self Quiz

Ask yourself...

  1. What do you know of the history of the EKG and telemetry? Was there anything new you learned?
  2. What process of developing the EKG interested you the most? Why?
  3. Do you think there is more that can be done to improve EKG? If so, what do you think could be done?
Bedside Monitor

Emergency departments (ED), intensive care units (ICU), and other specialized areas that require continuous monitoring of a patient’s EKG and vital signs utilize various bedside monitors to ensure they are receiving accurate, real-time information on the patient. Cords are used to connect the patient to the monitor. The electrodes to display and document cardiac rhythm and heart rate are applied to patients in the standard 5 lead placement displayed in the below image. The vitals displayed on the monitor can also be displayed outside the room on a screen with multiple patients. Nurses, paramedics, or trained telemetry monitor technicians can watch many of these monitors at a time.

 

(14)

 

The placement of the five leads consists of the following:

  • RA: 2nd intercostal space, anterior axillary on the right – some providers may put this lead higher on the chest or on the right arm
  • LA: 2nd intercostal space, anterior axillary on the left – some providers may put this lead higher on the chest or on the left arm
  • RL: 8th intercostal space, anterior axillary on the right – some providers may put this lead lower on the abdomen
  • LL: 8th intercostal space, anterior axillary on the left – some providers may put this lead lower on the abdomen
  • V: 4th intercostal space, right margin of the sternum

Note: Always follow the manufacturer’s instructions for specific lead placement.

Helpful Tip: Many healthcare providers quickly remember lead placement based on color is smoke (black) over fire (red) and snow (white) over grass (green). This leaves brown (chocolate) in the middle.

These bedside monitors can monitor pulse oximetry, respiratory rate, temperature, capnography, blood pressure, and arterial pressure. Some devices may have other unique monitoring features. These monitors may be portable or have a way to transfer the cords to a transport monitor. They come with alarms that can be adjusted based on the patient’s unique vital signs or hospital policy.

First responders have similar devices they use when transporting patients with the added benefit of having a defibrillator and a real-time feedback device built in (91).

 

Remote Monitoring

Remote cardiac monitoring is similar to bedside monitoring; however, the EKG rhythm, heart rate, and pulse oximetry are not displayed at the bedside. Instead, they are displayed in a different location, sometimes a monitor room, where a trained professional is watching many patients. When they recognize an abnormal rhythm, they will contact the appropriate staff to assess the patient. They may call for the leads to be removed, a change in rhythm, or a low battery.

The EKG leads are placed the same way as the bedside monitor leads are placed (always be sure to consult the manufacturer’s instructions). The information is transmitted wirelessly via wireless medical telemetry service (WMTS) from the “tele box,” but the leads must be wired to the box. WMTS does not use Wi-Fi and protects transmissions from Wi-Fi interference (48).

 

Mobile Cardiac Monitor and Event Monitor

A mobile cardiac or event monitor is a device attached to the skin that can perform continuous or event-specific monitoring. This device is attached to the patient’s chest near the heart and records when activated. This device is smaller than other portable cardiac monitoring devices like the Holter Monitor which will be discussed later. Information can be transmitted to the monitoring center to be reviewed by trained staff and/or artificial intelligence. Abnormalities like tachycardia, bradycardia, atrial fibrillation, or cardiac pauses are reported to a physician. The patient may or may not know about the rhythm abnormalities occurring as some patients are asymptomatic (18).

Event monitoring consists of the following methods (23):

  • Patch monitor: depending on the manufacturer, the device is stuck to the chest and left on for a designated period of time.
  • Loop memory monitor: the sensors always stay on the patient and the patient activates the devices to begin recording when symptoms occur in addition to a few minutes before the event starts and after it ends. There is an implanted option as well.
  • Symptom event monitor: Patients place the monitor on them and activate it like a patch monitor, but only when symptoms start.

 

Insertable Monitor

Insertable or implantable cardiac monitors are just like mobile and event monitors, but they are surgically inserted into the patient. They perform the same actions, but there is an added benefit to these devices. If the patient has worn an external device in the past and has known cardiac arrhythmias, they may have an implanted cardioverter-defibrillator (ICD) inserted to detect and treat the abnormal rhythm. These devices are connected to the heart via wires (they may be placed in the right atria, the right ventricle, or both) and are operated by batteries that do need to be changed per manufacture direction. Patients and providers should be aware of magnets, or electrical signals from other devices that can interfere with the insertable device (61).

Healthcare providers can “interrogate” ICDs or pacemakers with a device created by the monitor’s manufacturer. When interrogated, the device’s information is transmitted to a monitor center who calls the provider to give them a verbal report of what the device has recorded; a paper copy is often faxed to the provider as well. Some newer interrogation devices may display the information of the device on the screen.

 

Holter Monitor

As mentioned with mobile cardiac monitors, the Holter monitor is another wearable device that can be used to monitor and diagnose cardiac arrhythmias outside of the hospital setting. This device consists of five electrodes and a monitor that the patient can wear or carry on them. It is similar to the remote telemetry devices used in the inpatient hospital setting as shown in the next image. Patients wear this device for a short time, and information is not transmitted to a monitor technician. Instead, information collected is sent to a monitoring center where it is interpreted and sent to the physician (58).

As covered in this section, there are many options for cardiac telemetry monitoring, and providers may encounter many types of them. It is important to know these devices and how they operate.

Quiz Questions

Self Quiz

Ask yourself...

  1. What types of telemetry/EKGs are you most familiar with? Which ones would you like to know more about?
  2. Are there any parts of the devices mentioned above that you have never heard of before?
  3. Out of all the devices which one do you like best? Which device do you not like?
  4. What devices do you think could be improved and how would you suggest improving them?

Lead Placement

Now that we have discussed the types of telemetry monitoring devices that are available, it is time to discuss how to properly place the EKG leads on a 12 lead, 15 lead, right-sided EKG, and where to place the V4R lead.

 

12 Lead EKG

For the 12 lead EKG, providers should start with the four limb leads (14):

  • RA: On the upper or lower right arm
  • LA: On the upper or lower left arm
  • RL: on the upper or lower right leg
  • LL: on the upper or lower left leg

From there, the six pericardial leads are placed strategically around the chest to create a partial circle around the heart (14):

  • V1: 4th intercostal space, right margin of the sternum (this is lead V on the 5 lead EKG)
  • V2: 4th intercostal space, left margin of the sternum
  • V3: sits midway between leads V2 and V4 on the left
  • V4: 5th intercostal space, mid-clavicular line on the left
  • V5: 5th intercostal space, anterior axillary line on the left (aligned horizontally with V4, between V4 and V6) on the left
  • V6: 5th intercostal space, mid-axillary line on the left (aligned horizontally with V4)

 

15 Lead EKG

The 15 lead EKG uses the same leads as the 12 lead EKG, but it adds V7, V8, and V9, known as the posterior leads, to encompass the posterior angles of the heart (14):

  • V7: left posterior axillary line (aligned horizontally with V6, across from V5)
  • V8: tip of the left scapula (aligned horizontally with V6, across from V4)
  • V9: left of the spinal column (aligned horizontally with V6, across from V3)

 

Right Sided EKG

The right-sided EKG is important to rule out the diagnosis of a right-sided myocardial infarction (MI) or ischemia in or out while treating a patient. Lead placement is the same for the four limb leads, but the 6 precordial leads are flipped (14):

  • V1: 4th intercostal space, left margin of the sternum
  • V2: 4th intercostal space, right margin of the sternum (this is lead V on the 5 lead EKG)
  • V3: sits midway between leads V2 and V4
  • V4: 5th intercostal space, mid-clavicular line on the right
  • V5: 5th intercostal space, anterior axillary line on the right (aligned horizontally with V4, between V4 and V6)
  • V6: 5th intercostal space, mid-axillary line on the right (aligned horizontally with V4)

 

V4R Lead Placement

A full right-sided EKG is not always needed. Lead V4 on the right side of the heart is the most important lead when it comes to determining an MI on the right side of the heart (14):

  • V1, V2, V3, V5, V6: same placement as the 12 and 15 lead EKGs.
    • V4 is removed and placed on the right side of the chest
  • V4R: 5th intercostal space, mid-clavicular line on the right (Where it is located on a complete right sided EKG)
    • The “R” stands for right to ensure that those reading the EKG are aware that lead is on the right while the rest are located on the left side of the chest.

 

Limb Leads

Now that lead placement has been covered, we can now discuss how lead placement shows different parts of the heart.

Leads I, II, III, AVR, AVL, and AVF are considered limb leads when reading the EKG. It is important to note that the right leg lead is the grounding electrode and does not affect the EKG (83). Leads I, II, and III leads form a triangle over the chest known as Einthoven’s Triangle as reflected in the below image. Lead I always has negative polarity while lead III always has positive polarity. Lead II’s polarity depends on what side of the triangle is being discussed. If we are looking at lead I on the EKG, then lead II is positive, but if we are looking at lead III, then lead II is negative (82).

The importance of what leads are negative and positive comes from how electricity travels through the heart. It starts on the right side and moves to the left, so it would make sense for lead I to have negative polarity while leads II and III are positively charged (82). This is also why the height of a PQRST complex changes based on what lead is being looked at on an EKG as reflected below.

Augmented or unipolar leads AVR, AVL, and AVF have the heart as the negative electrode and the limb leads are the positive electrodes. AVR goes from the heart to the right arm lead, AVL goes from the heart to the left arm lead, and AVF goes from the heart to the left leg lead. Just as discussed with leads I, II, and III, the path of the electricity in the heart determines how the PQRST complex appears on the rhythm strip (82). Lead II is the preferred strip to read by providers due to the best view of the rhythm due to the way electricity travels through the heart and how lead II follows that path by starting at the right shoulder and going to the left leg.

The chest leads, V1 – V9, create a circle around the heart on a horizontal plane. These leads are unipolar as well, with the heart being the negative electrode. Multiple views of the heart are captured because of the many leads placed along the patient’s body. This can give providers valuable knowledge on what areas of the heart may be affected. The next image gives a visual depiction of how the leads display their view of the heart.

Quiz Questions

Self Quiz

Ask yourself...

  1. What lead do you think is the most beneficial in reading EKGs? Why do you think that?
  2. What lead do you prefer to use when reading EKGs? What makes that your “go-to” lead?
  3. If you could make a policy on EKGs, would you include what type of EKG should be done on patients? Would all patients with chest pain get a 15 lead EKG instead of 12?
  4. Do you think that one type of EKG is better than the other? Or do they all have their specific uses and benefits?

Reading EKGs: EKG Components

To be able to interpret EKGs successfully, nurses must first have knowledge about the EKG components displayed on the EKG strips and how each part correlates to a part of a single heartbeat.

 

P wave

The P wave is the first deflection from the isoelectric line or baseline. Correlating this to the heart, this is where the atria depolarize or contract. The contraction of the right atria starts at the beginning of the P wave while the contraction of the left atria begins in the middle and end of it. Normal P waves are apparent between 120 and 200 milliseconds (msec) before the upward deflection of the QRS complex (44)

 

PR Interval

The next part of the PQRST complex is the PR interval. The interval symbolized the time between the depolarization of the atria and the depolarization of the ventricle. The normal speed is 120 to 200 msec (44).

 

PR Segment

Next is the PR segment. This is similar to the PR interval but starts at the end of the P wave and ends at the start of the Q wave. This line is important because if there is a deviation from the isoelectric line, it could indicate a cardiac rhythm abnormality like Wolff-Parkinson-White syndrome which will be discussed later. The EKG may have a “slurred” upstroke from the P to R points on the EKG, making the Q wave appear to be on the isoelectric line. This is because the ventricles were stimulated or excited early, leading to a shortened PR interval. The “slurred” area is known as a delta wave (13).

 

QRS Complex

The QRS complex is where the ventricles depolarize and contract. The first downward deflection of the beat is the Q wave that lasts for < 0.05 seconds. It is present in all leads save for V1 and V3 due to the angle of the vector. The R wave is the upward deflection of the complex. R waves do not have a set height, but severely elevated R waves can be an indicator of ventricular hypertrophy. The second downward deflection is the S wave. Overall, the QRS complex is 0.07 to 0.10 seconds long and variations to this time can be an indicator of abnormal heart rhythms (17).

 

ST Segment

The ST segment starts when the S wave ends by returning to the isoelectric line and ends when the T wave begins. This period represented the completion of ventricular depolarization (17). The ST segment lasts 0.08 seconds to 0.12 seconds (51).

 

T Wave

The final wave in the standard EKG components is the T wave. This wave symbolizes the ventricles repolarizing. Inverted T waves can be an indication of past or current infections. A peaked T wave—as opposed to the normal curved T wave—can be caused by hypocalcemia, hyperkalemia, and left ventricular hypertrophy (17). The T wave runs from 0.01 seconds to 0.25 seconds (51).

 

The image below depicts the components of an EKG with labels to assist with understanding how the waves appear.

 

(4)

 

Reading EKGs: EKG Paper

The EKG paper has sets of squares, 25 little squares within one larger square. The smaller squares symbolize 0.04 seconds making the larger square 0.20 seconds. A single small square is 1mm while the large square is 5mm, this is because the larger square is five small squares tall.

 

(15)

 

Some EKG strips are presented in a six second format. To determine if the strip is a six-second, you must count the larger boxes. 30 larger boxes are required for the strip to be six seconds. Some may even have second markers that symbolize one second of time passed.

The 12 lead EKG can be more challenging to read and is often used to make an overall observation about the patient’s heart rate and rhythm. It can provide more information to providers than a single lead strip can. 

As discussed previously, the leads are placed along the path of the heart, and providers can determine what part of the heart may be affected by knowing what leads are placed where.

 

Lead Location
II, III, AVF Inferior
I, AVL, V5, V6 Lateral
V2, V3, V4 Anterior
V1, AVR Right atrium, left ventricle

(51)

 

Now that we have discussed leads, lead placement, the PQRST complex, and EKG paper, it is time to cover different cardiac rhythms that you may encounter.

Quiz Questions

Self Quiz

Ask yourself...

  1. What parts of the PQRST complex may not appear on the EKG strip?
  2. How do you remember what leads are associated with each part of the heart?
  3. What are some ways you can quickly determine heart rate using an EKG strip?
  4. Is there a part of the PQRST complex do you think is important to pay attention to? Why do you think that?

Rhythm Recognition

Normal Sinus (41):
  • Rate: 60-100 beats per minute (bpm)
  • Conduction:
    • PR interval 120-200ms
    • QRS width 60-100ms
  • P wave morphology:
    • The maximum height of the P wave is:
      • Lead II and III: 2.5 mm
    • The P wave is:
      • Positive or above the isoelectric line in II and AVF
      • Biphasic (curves above and then dips below the isoelectric line) in V1
    • Duration:
      • Less than 0.12 seconds
    • Rhythm Strip:

(29)

 

Sinus Bradycardia (87):
  • Rate: less than 60bpm
  • Conduction:
    • PR interval 120-200ms
    • QRS width 60-100ms
  • P wave morphology:
    • The maximum height of the P wave is:
      • Lead II and III: 2.5 mm
    • The P wave is:
      • Positive or above the isoelectric line in II and AVF
      • Biphasic in V1
    • Rhythm Strip:

(87)

 

  • Signs and Symptoms:
    • None – depending on the patient
    • Cyanosis
    • Peripheral edema
    • Shortness of breath
    • Dizziness
    • Fatigue
    • Syncope or near syncope
    • Lightheadedness
  • Causes (not limited to):
    • Normal physiology in an athlete
    • Medications like beta-blockers
    • Ischemia
    • Heart diseases
    • Sick sinus syndrome
    • Hypothermia
    • Hypothyroidism
    • Neuro-mediated bradycardia as caused by a vasovagal reaction
    • Pericarditis
    • Hypoxia
    • Electrolyte imbalances
    • Treatment:
      • None if asymptomatic, admission for observation may be indicated
      • Medications:
        • Atropine 0.5mg every 3 to 5 minutes for a maximum dose of 3mg
        • Antidotes or reversal agents
      • Transcutaneous cardiac pacing or pacemaker
      • Return patient to a normothermic state if hypothermic

     

    Sinus Tachycardia (55):
    • Rate: greater than 100bpm but less than 150bpm
    • Conduction:
      • PR interval 120-200ms
      • QRS width 60-100ms
    • P wave morphology:
      • The maximum height of the P wave is:
        • Lead II and III: 2.5 mm
      • The P wave is:
        • Positive or above the isoelectric line in II and AVF
        • Biphasic in V1
      • Rhythm Strip:

    (42)

     

    • Signs and Symptoms:
      • Shortness of breath
      • Chest pain
      • Dizziness
      • Syncope or near syncope
      • Lightheadedness
      • Palpitations
    • Causes:
      • Infection or sepsis
      • Medications
      • Withdrawal
      • Electrolyte imbalances
      • Blood loss or anemia
      • Dehydration
      • Hypoglycemia
      • Pulmonary embolism
      • Trauma
      • Cardiac tamponade
      • Myocarditis
      • Pregnancy
    • Treatment:
      • Medications
        • Antibiotics
        • Antidotes or reversal agents
        • Insulin
        • Electrolyte replacement
        • Fluids
        • Heparin or other anticoagulant medications
      • Blood replacement
      • Surgery
    Quiz Questions

    Self Quiz

    Ask yourself...

    1. Looking at the signs and symptoms for sinus bradycardia what other signs and symptoms have you seen with patients who present with that heart rhythm?
    2. What other causes have you seen as the reason for sinus bradycardia?
    3. With sinus tachycardia, when would you be concerned with the causes of the rhythm?
    4. Are there any other treatments you could think of for either sinus bradycardia or tachycardia?
    1st Degree AV Block (68):
    • Rate: 60-100 beats per minute (bpm)
    • Conduction:
      • PR interval greater than 0.20 seconds
    • P wave morphology:
      • The maximum height of the P wave is:
        • Lead II and III: 2.5 mm
      • The P wave is:
        • Positive or above the isoelectric line in II and AVF
        • Biphasic in V1
      • A QRS complex always follows the P wave
    • Duration:
      • Less than 0.12 seconds
    • Rhythm Strip:

    (32)

     

    • Signs and Symptoms:
      • None
      • Fatigue
      • Shortness of breath
      • Syncope or near syncope
      • Chest pain
      • Lightheadedness
    • Causes:
      • Increased vagal tones in young patients
      • Fibrotic changes in the elderly
      • Cardiac disease
      • Inflammation
      • Medications
      • Electrolyte abnormalities
    • Treatment:
      • None if asymptomatic
      • Medications
        • Antibiotics
        • Antidotes or reversal agents
        • Electrolyte replacement

     

    2nd Degree Type I AV Block (Mobitz Type 1 or Wenckebach) (60):
    • Rate: varies
    • Conduction:
      • PR interval increases with each beat, eventually “dropping off” and another P wave appears
      • “Longer, longer, drop, that’s a Wenckebach.”
    • P wave morphology:
      • The maximum height of the P wave is:
        • Lead II and III: 2.5 mm
      • The P wave is:
        • Positive or above the isoelectric line in II and AVF
        • Biphasic in V1
      • Rhythm Strip:

    (27)

     

    • Signs and Symptoms:
      • None
      • Fatigue
      • Shortness of breath
      • Syncope or near syncope
      • Chest pain
      • Lightheadedness
    • Causes:
      • Increased vagal tones
      • Cardiomyopathy
      • Myocardial infarction
      • Cardiac surgery
      • Electrolyte abnormalities
      • Medications
    • Treatment:
      • None if asymptomatic
      • Medications
        • Atropine if bradycardic
        • Antidotes or reversal agents
        • Electrolyte replacement

     

    2nd Degree Type II AV Block (Mobitz II) (60):
    • Rate: varies
    • Conduction:
      • PR interval varies
      • QRS width 60-100ms when present
        • QRS does not follow all P waves
      • P wave morphology:
        • The maximum height of the P wave is:
          • Lead II and III: 2.5 mm
        • The P wave is:
          • Positive or above the isoelectric line in II and AVF
          • Biphasic in V1
        • Rhythm Strip:

    (40)

     

    • Signs and Symptoms:
      • Fatigue
      • Shortness of breath
      • Syncope or near syncope
      • Chest pain
      • Lightheadedness
      • Cardiac arrest
    • Causes:
      • Structural heart disease
      • Amyloidosis
      • lymphoma
      • Cardiac tumors
      • Transcatheter placement of valves
      • Myocardial infarction
      • Genetics
    • Treatment:
      • None if asymptomatic
      • Medications
        • Atropine does not work on these patients
        • Antidotes or reversal agents
      • Transcutaneous cardiac pacing or pacemaker since this rhythm can progress to a complete heart block or cardiac arrest

     

    3rd Degree AV Block (78):
    • Rate: varies, but usually bradycardic
    • Conduction:
      • PR interval varies
      • QRS width 60-100ms when present
      • P wave and QRS complex do not communicate (called AV disassociation)
    • P wave morphology:
      • The maximum height of the P wave is:
        • Lead II and III: 2.5 mm
      • The P wave is:
        • Positive or above the isoelectric line in II and AVF
        • Biphasic in V1
      • Rhythm Strip:

    (33)

     

    • Signs and Symptoms:
      • Fatigue
      • Shortness of breath
      • Syncope or near syncope
      • Chest pain
      • Lightheadedness
      • Hemodynamic instability
      • Cardiac murmurs
      • Cardiac arrest
    • Causes:
      • Cardiac surgery
      • Cardiac disease
      • Medications
      • Electrolyte imbalances
      • Lyme disease
      • Transcatheter aortic valve replacement
      • Myocardial infarction
      • Systemic lupus erythematosus
      • Sarcoidosis
    • Treatment:
      • Medications
        • Atropine usually does not work, but can be administered
        • Epinephrine
        • Dopamine
        • Antidotes or reversal agents
        • Electrolyte replacement
      • Transcutaneous cardiac pacing or pacemaker
    Quiz Questions

    Self Quiz

    Ask yourself...

    1. 2nd degree Type I and Type II can be mixed up, what are your methods for remembering how each one appears on the EKG strip?
    2. What type of AV block would lead you to provide quick intervention and why?
    3. Have you encountered a patient with any of these rhythms? What was the cause? How was it resolved, if it was?
    4. Are there any causes for these rhythms that were not listed?
    Premature Ventricular Contraction (PVC) (88):
    • Rate: varies, underlying rhythm is usually normal sinus
      • The impulse to beat comes from the ventricles, not from the SA node
    • Conduction:
      • PR interval varies, but in a regular PQRST complex PR interval is 120-200ms
      • PR interval after a PVC is longer due to the PVC and the retrograde concealed conduction goes back into the AV node junction.
      • PVC QRS width is at least 120ms but usually 160-200ms
      • Regular QRS width is 60-100ms
      • PR interval after a PVC is longer due to the PVC and the retrograde concealed conduction goes back into the AV node junction.
    • P wave morphology:
      • The maximum height of the P wave is:
        • Lead II and III: 2.5 mm
      • The P wave is:
        • Positive or above the isoelectric line in II and AVF
        • Biphasic in V1
      • Rhythm Strip:
        • Monomorphic: All PVCs are shaped the same

    (38)

     

    • Biomorphic: PVCs are shaped differently

    (64)

    • Bigeminy: Every PVC is separated by one sinus beat.

    (35)

    • Trigeminy: Every PVC is separated by two sinus beats.

    (9)

    • Ventricular Couplet: Two PVC beats in a row.

    (9)

    • Ventricular Triplet: Three PVC beats in a row.

    (9)

     

    • Signs and Symptoms:
      • None
      • Fatigue
      • Shortness of breath
      • Syncope or near syncope
      • Chest pain
      • Palpitations
      • Lightheadedness
      • Abnormal neck pulsation
      • Hemodynamic instability with frequent PVCs
      • Cardiac arrest
    • Causes:
      • Hypoxia
      • Illicit drug use
        • Amphetamines
        • Alcohol
        • Cocaine
      • Electrolyte imbalances
      • Myocarditis
      • Mitral valve prolapse
      • Hypercarbia
      • Cardiomyopathies
      • Myocardial infarction
      • Medications
    • Treatment:
      • None if asymptomatic
      • Medications
        • Beta-blockers
        • Calcium channel blockers
        • Amiodarone is for those with preexisting coronary artery diseases, but used with caution and close observation and monitoring
        • Antidotes or reversal agents
        • Electrolyte replacement
      • Cardiac ablation
      • Defibrillation if cardiac arrest occurs

     

    Premature Atrial Contractions (PAC) (54):
    • Rate: varies, underlying rhythm is usually normal sinus
    • Conduction:
      • PR interval varies, but in a regular PQRST complex PR interval is 120-200ms
      • PAC
      • Regular QRS width is 60-100ms
    • P wave morphology:
      • The maximum height of the P wave is:
        • Lead II and III: 2.5 mm
      • The P wave:
        • Can be inverted
        • May be hidden in the T wave creating a hump or peaked T wave
      • These rhythms can come in the same variations as PVCs:
        • Bigeminy
        • Trigeminy
        • Couplet
        • Triplet
      • Rhythm Strip:

    (37)

    • Signs and Symptoms:
      • None
      • Palpitations
      • Shortness of breath
      • Anxiety
      • Signs and symptoms of heart failure
      • Early or additional heart sounds
      • Pauses in rhythm
    • Causes:
      • Coronary artery disease
      • Left ventricular hypertrophy
      • Septal defects
      • Congenital heart deformities
      • Medications
        • Beta-blockers
        • Chemotherapeutic agents
      • Congestive heart failure
      • Diabetes mellitus
      • Hypertension
      • Chronic obstructive pulmonary disorder
      • Anxiety
    • Treatment:
      • None if asymptomatic
      • Avoiding triggers
      • Medications
        • Beta-adrenergic blockers
        • Antiarrhythmic agents are used with caution and close observation and monitoring
        • Antidotes or reversal agents
        • Cardiac ablation
    Quiz Questions

    Self Quiz

    Ask yourself...

    1. Between PACs and PVCs, which one would you be more concerned about? Why did you pick that rhythm?
    2. Have you encountered a patient with either of these rhythms? What treatments were ordered if any?
    Ventricular Tachycardia (V Tach) (45):
    • Rate: greater than 100bpm
    • Conduction:
      • PR interval none
      • QRS width greater than 140ms
    • P wave morphology:
      • Not present
    • Non-sustained V-Tach: three or more ventricular beats over a maximum of 30 seconds.
    • Sustained V-Tach: a run of V Tach for more than 30 seconds or less is treated by cardioversion
    • Monomorphic V-Tach: all ventricular beats look the same
    • Polymorphic V-Tach: the ventricular beats look different.
    • Biphasic V Teach: where the QRS complexes alternate with each beat.
      • Digoxin intoxication
      • Long QT syndrome
    • Rhythm Strip:
      • Monomorphic V-Tach

    (11)

    • Signs and Symptoms:
      • Palpitations
      • Shortness of breath
      • Chest pain
      • Syncope or near syncope
      • Signs of heart failure
      • Hemodynamic instability
      • ICD shocks if the patient has one
      • Cardiac arrest
        • Also known as pulseless V-Tach
      • Causes:
        • Ischemic heart disease
        • Acute coronary artery disease
        • Myocardial scar-related reentry
        • Congenital heart deformities
        • Cardiomyopathy
        • Illicit drugs
          • Cocaine
          • Digitalis toxicity
          • Methamphetamine
        • Medications
          • Beta-blockers
          • Chemotherapeutic agents
        • Electrolyte imbalances
        • Sepsis
        • Metabolic acidosis
        • Inherited cardiac channelopathies
      • Treatment:
        • Cardiopulmonary resuscitation (CPR) and defibrillation if no pulse present
        • Cardioversion if hemodynamically unstable and has a pulse
        • Treatment for myocardial infarction
        • Medications
          • Amiodarone, procainamide, sotalol
          • Antidotes or reversal agents
        • ICD
        • Cardiac ablation
    Quiz Questions

    Self Quiz

    Ask yourself...

    1. What would be the priorities when providing care to a patient with V-Tach with a pulse?
    2. If you were the only one in the room with the patient what would be your first action?
    3. Have you ever cardioverted a patient with this rhythm? What do you remember from the event?
    4. Do you think the patient should sign consent before cardioversion? Why or why not?

     

    Torsades de Pointes (V Fib) (25):
    • Rate: none
    • Conduction:
      • Polymorphic V-Tach with a prolonged QR interval
    • P wave morphology:
      • Not present
    • Rhythm Strip:

    (12)

    • Signs and Symptoms:
      • None
      • Syncope or near syncope
      • Dizziness
      • Lightheadedness
      • Hypotension
      • Rapid pulse
      • Cardiac arrest
        • No pulse
        • Not breathing or only gasping for air
        • Loss of consciousness
      • Causes:
        • Electrolyte imbalances
        • Medications
          • Zofran causes a long QT interval (19)
        • Congenital prolonged QT:
          • Jervell and Lange-Nielsen
          • Romano-Ward syndrome
        • Bradycardia
        • Diuretic use
        • Female gender
        • Age
      • Treatment:
        • Electrolyte replacement
        • CPR and defibrillation
        • Medications
          • Epinephrine
          • Atropine
        • Cardioversion
        • Treatment of the underlying cause
    Supraventricular Tachycardia (SVT) (72):
    • Rate: Greater than 160bpm
    • Conduction:
      • PR interval not present
      • QRS width less than 120 milliseconds = narrow complex, regular SVT
      • QRS width greater than 120 milliseconds = wide complex, regular SVT
    • P wave morphology:
      • Not present
    • Rhythm Strip:
      • Narrow complex, regular SVT

    (30)

    • Wide complex, regular SVT

    (79)

    • Signs and Symptoms:
      • None
      • Hypotension
      • Shortness of breath
      • Lightheadedness
      • Signs and symptoms of heart failure
      • Shock
    • Causes:
      • Narrow complex, regular SVT - Orthodromic reentry phenomenon (56):
        • Accessory pathway that connects the atria and ventricles without passing through the AV node
        • A pulse goes through the AV node, down into the ventricles via the Bundle of His, up through the accessory pathway, and back into the AV node
      • Wide complex, regular SVT - Atrioventricular reentry phenomenon (57):
        • Signals from the SA node travel through the accessory pathway down the ventricles via the Bundle of His and up to the AV node, creating a backward cycle.
        • This is slower than the orthodromic SVT because it is traveling against the regular path of conduction, leaving to a wide QRS complex
      • Medications
      • Caffeine
      • Smoking
      • Stress
      • Alcohol
    • Treatment:
      • None if asymptomatic
      • Vagal maneuvers
        • Bearing down
        • Blowing into a straw
      • Medications
        • Adenosine: 1st dose 6mg, 2nd dose 12mg
          • Ensure rapid saline flush after pushing medication as it has an extremely short half-life
        • Cardizem
        • Antidotes or reversal agents
      • Cardioversion
      • Cardiac ablation
    Quiz Questions

    Self Quiz

    Ask yourself...

    1. If you have encountered a patient in SVT, what vagal maneuvers have you seen used? Were they successful or not?
    2. If you have not encountered a patient with SVT, what vagal maneuvers could you think of that might be utilized?
    3. Would a patient’s age impact the vagal maneuvers used? Why or why not?
    4. Do you know the half-life of Adenosine? If not, will you look it up after this course?

     

     Ventricular Fibrillation (V-Fib) (3):
    • Rate: none
    • Conduction:
      • PR interval not present
      • QRS width not present
    • P wave morphology:
      • Not present
    • Rhythm Strip:

    (39)

    • Signs and Symptoms:
      • Cardiac arrest
        • No pulse
        • Not breathing or only gasping for air
        • Loss of consciousness
      • Causes:
        • Electrolyte imbalances
        • Myocardial infarction
        • Congenital heart defects
        • Sudden blow to the chest right over the heart
        • Medications
        • Anemia
        • Cardiomyopathy
        • Electrocution
        • Thoracic trauma
        • Heart surgery
      • Treatment:
        • CPR and defibrillation
        • Medications
          • Epinephrine
          • Atropine
          • Electrolytes
        • Surgery
        • Coronary perfusion
        • Treatment of the underlying cause
    Asystole (59):
    • Rate: none
    • Conduction:
      • PR interval not present
      • QRS width not present
    • P wave morphology:
      • May or may not be present
    • Rhythm Strip:

    (21)

    • Signs and Symptoms:
      • Cardiac arrest
        • No pulse
        • Not breathing or only gasping for air
        • Loss of consciousness
      • Causes:
        • Electrolyte imbalances
        • Myocardial infarction
        • Congenital heart defects
        • Medications or illicit drugs
        • Blood loss
        • Cardiomyopathy
        • Electrocution
        • Trauma
      • Treatment:
        • CPR
          • Since there is no electrical activity with this rhythm, defibrillation cannot be used
        • Medications
          • Epinephrine
          • Atropine
          • Electrolytes
        • Surgery
        • Coronary perfusion
        • Treatment of the underlying cause

     

    Pulseless Electrical Activity (PEA) (22):
    • Rate: varies
      • There is no pulse with this rhythm despite the fact that it may appear as an organized rhythm
    • Conduction:
      • PR interval none
      • QRS width greater than 110ms
    • P wave morphology:
      • Not present
    • The P wave is:
      • Not present
    • Rhythm Strip:

    (22)

    • Signs and Symptoms:
      • Cardiac arrest
        • No pulse
        • Not breathing or only gasping for air
        • Loss of consciousness
      • Causes:
        • Electrolyte imbalances
        • Myocardial infarction
        • Congenital heart defects
        • Medications or illicit drugs
        • Blood loss
        • Cardiomyopathy
        • Electrocution
        • Trauma
        • Hypothermia
        • Pneumothorax or hemothorax
      •  Treatment:
        • CPR
          • Since there is no electrical activity with this rhythm, defibrillation cannot be used
        • Medications
          • Epinephrine
          • Atropine
          • Electrolytes
        • Surgery
        • Coronary perfusion
        • Treatment of the underlying cause
    Quiz Questions

    Self Quiz

    Ask yourself...

    1. What are some misconceptions about V-Fib, asystole, and PEA?
    2. How do you educate other staff members and family members on these misconceptions?
    3. What treatments have you seen work on V Fib? What treatments did not work?
    4. Have you ever seen a patient’s rhythm change from asystole to another rhythm?
    5. What is the most prominent cause of cardiac arrest in your area?

     

    Atrial Flutter (73):
    • Rate: varies
      • Depends on how many QRS complexes there are
        • Atrial rate 250-350 bpm
        • Ventricular rate 75-150bpm
      • P waves can come in blocks
        • 2 P waves per 1 QRS (2:1)
        • 3 P waves per 1 QRS (3:1)
        • 4 P waves per 1 QRS (4:1)
        • Intervals of P waves per 1 QRS (2:1 then 3: 1 then 2:1 then 4:1)
      • Conduction:
        • PR interval varies
        • QRS width 60-100ms
      • P wave morphology:
        • The maximum height of the P wave is:
          • Lead II and III: 2.5 mm
          • Sawtooth pattern
        • Rhythm Strip:

    (31)

    • Signs and Symptoms:
      • None
      • Palpitations
      • Fatigue
      • Syncope or near syncope
      • Shortness of breath
      • Regular or irregularly regular pulse
    • Causes:
      • COPD
      • Heart failure
      • Atrial size abnormalities
      • Hypertension
      • Diabetes mellitus
      • Age
      • Male gender
    • Treatment:
      • None if asymptomatic
      • Medications
        • Amiodarone
        • Cardizem
        • Metoprolol
        • Anticoagulation to prevent stroke
      • Catheter ablation
      • Treatment of the underlying cause
    Atrial Fibrillation (AFib) (89):
    • Rate: varies
      • Atrial rate 400-600 bpm
      • Ventricular rate 75-175 bpm
        • Anything over 100 is considered A Fib with rapid ventricular response (RVR)
      • Conduction:
        • PR interval varies
        • QRS width 60-100ms
      • P wave morphology:
        • The maximum height of the P wave is:
          • Lead II and III: 2.5 mm
        • Rhythm Strip:
          • A Fib

    (28)

    • A Fib RVR

    (34)

    • Signs and Symptoms:
      • None
      • Palpitations
      • Fatigue
      • Syncope or near syncope
      • Shortness of breath
      • Regular or irregular pulse
        • Patients can go in and out of A Fib or it can be permanent,
        • They can go in and out of RVR
      • Causes:
        • Heart disease
        • Genetics
        • Pulmonary embolism or other hemodynamic stressors
        • Obstructive sleep apnea
        • Heart failure
        • Pericarditis
        • Myocarditis
        • Myocardial infarction
        • Hypertension
        • Diabetes mellitus
        • Age
      • Treatment:
        • None if asymptomatic
        • Medications
          • Cardizem
          • Metoprolol
          • Amiodarone
          • Anticoagulation to prevent stroke
        • Catheter ablation
        • Treatment of the underlying cause

     

    Idioventricular Rhythms (47):
    • Rate: varies
      • Idioventricular rate 35-40bpm
      • Accelerated rate 60-120bpm
    • Conduction:
      • PR interval not present
      • QRS width greater than 120ms but can be greater than 160ms
        • The normal conduction system does not transmit the signal to beat, the vertical signal is transmitted from cell to cell
      • P wave morphology:
        • Not present
      • Rhythm Strip:
        • Idioventricular rate

    (36)

    • Signs and Symptoms:
      • None
      • Palpitations
      • Fatigue
      • Lightheadedness
      • Syncope or near syncope
      • Cardiac arrest
    • Causes:
      • Electrolyte imbalances
      • Reperfusion of cardiac cells after a myocardial infarction
      • Medications
        • Digoxin
        • Beta-adrenoreceptor agonists
      • Illicit drug use like cocaine
      • Cardiomyopathies
      • Congenital cardiac defects
      • Athletes
    • Treatment:
      • None if asymptomatic
      • Medications
        • Atropine
        • Amiodarone or lidocaine
        • Reversal agents
      • Rarely cardiac pacing
      • Treatment of the underlying cause
    Junctional Rhythms (52):
    • Rate: varies
      • Junctional bradycardia less than 40bpm
      • Junctional escape rhythm 40-60bpm
      • Accelerated junctional rhythm 60-100bpm
      • Junctional tachycardia greater than 100bpm
    • Conduction:
      • PR interval not present
      • QRS width 60-100ms
    • P wave morphology:
      • Not present
    • Rhythm Strip:
      • Accelerated Junctional Rhythm
        • Rhythms look the same but have more beats depending on the type of rhythm

    (52)

    • Signs and Symptoms:
      • None
      • Shortness of breath
      • Palpitations, intermittent or continuous
      • Fatigue
      • Lightheadedness
      • Syncope or near syncope
    • Causes:
      • Electrolyte imbalances
        • Can be caused by anorexia nervosa
      • Thoracic trauma
      • Myocarditis
      • Reperfusion of cardiac cells after a myocardial infarction
      • Medications
        • Adenosine
        • Clonidine
        • Antiarrhythmics
        • Lithium
        • Digoxin
      • Sleep apnea
      • Hypoxia
      • Coronary artery disease
      • Congenital cardiac defects and repairs of these defects
    • Treatment:
      • None if asymptomatic
      • Medications
        • Atropine
        • Reversal agents
      • Transcutaneous pacing
      • Permanent pacemaker
      • Treatment of the underlying cause

     

    Bundle Branch Blocks (BBB) (43, 53, 70):
    • Rate: varies
    • Conduction:
      • Right BBB (RBBB):
        • QRS interval greater than 120ms
        • Septal depolarization that leads to a:
          • Small R wave being present in V1
          • Q wave in V6
        • The left ventricle’s contraction leads to and:
            • S wave in V1
            • R wave in V6
        • The right ventricle’s contraction leads to an:
          • R wave in V1
          • Deep S wave in V6
        • Left BBB (LBBB):
          • QRS interval greater than 120ms
          • T wave inversion is due to abnormal repolarization
          • From first principles:
          • Septal depolarization that leads to a:
            • Q wave in V1
            • R wave in V6
        • The right ventricle’s contraction leads to an:
          • R wave in V1
          • S wave in V6
        • The left ventricle’s contraction leads to and:
          • S wave in V1
          • R wave in V6
      • P wave morphology:
        • The maximum height of the P wave is:
          • Lead II and III: 2.5 mm
        • Rhythm Strip:
          • RBBB

    (71)

          • LBBB

    (71)

    • Signs and Symptoms:
      • None
      • Lightheadedness
      • Syncope or near syncope
    • Causes:
      • RBBB:
        • Myocardial infarction
        • Congenital cardiac defects
        • Pulmonary embolism
        • Myocarditis
        • Pulmonary hypertension
      • LBBB:
        • Myocardial infarction
        • Hypertension
        • Cardiomyopathy
        • Myocarditis
      • Treatment:
      • None if asymptomatic
      • Treatment of the underlying cause

    Identifying Ischemia and Infarction

    Known as coronary artery disease (CAD), acute myocardial ischemia is the decrease of blood flow to the heart by atherosclerosis or plaque. The atherosclerosis starts as a plaque streak within the large arteries and continues to build up. After the plaque has grown to a significant size, occlusion begins and blood flow to areas below the growing occlusion suffers a decrease in blood flow. This is what is known as ischemia (81).

    When resting, patients may not experience any signs or symptoms. Upon exertion, however, patients may experience stable angina—chest pain, discomfort, pressure, etc.—as activity requires increased blood flow and the arteries constrict to pump blood through the body faster. This pain is relieved at rest and can be further treated by nitrates. The routine is what makes this stable angina (81).

    Unstable angina begins once the artery has become occluded enough to create a significant obstruction of blood flow. Signs and symptoms can include chest pain or other discomfort that is challenging to relieve, even when at rest. Patients may be woken from sleep due to the pain and report that it takes longer for the pain to decrease or resolve completely. These signs and symptoms symbolize that the plaque within the artery is unstable and could potentially rupture (90).

    Infarction is when the blood flow is completely obstructed and the cells below the obstruction begin to die off. This often occurs when the plaque within the artery ruptures, leading to the body’s natural clotting processing in an attempt to repair the rupture, and a complete occlusion of the artery occurs (46).

    Now that we have discussed ischemia and infarction, it is time to discuss how a myocardial infarction (MI) appears on an EKG and how to identify it. You may also hear them referred to as STEMIs or ST-elevation myocardial infarction.

    The progression of PQRST complex changes during an MI can start with hyperacute T waves. The T wave will increase with amplitude and become wider, while some ST elevation may be noted. This elevation begins to occur as injury to the heart muscle begins. From there, the ST elevation increases and creates the image often associated with an MI. Pathological Q wave may develop as the MI progresses. As discussed earlier, the Q wave is the first downward deflection of the QRS complex and is normally 1mm or less in depth. Pathological Q waves are measured by greater than 1mm wide or greater than 25% of the R wave’s amplitude (84).

    T wave inversion occurs when the cells have become necrotized and begin to form fibrosis. Once all necrotized cells have become fibrotic, the Q waves will remain, but the T waves will become upright again (84).

     

    (84)

     

    These changes should be present in at least 2 contiguous leads or leads that are side by side. To discuss this more, we will refer to the 12 lead EKG photo we used earlier. It is important to know that there will be leads with ST elevation and there will be leads with reciprocal ST depression based on the type of MI and how these leads are placed in relation to the area of the heart that is being affected.

     

    Type of MI Leads with ST Elevation Reciprocal ST Depression
    Inferior I, II, AVF I, AVL
    Lateral V5, V6 III, AVR
    Anterior I, AVL, V5, V6 II, III, AVF
    Posterior V7, V8, V9 V1, V2, V3

     

    (82)

     

    With posterior MIs the elevation must be at least 0.5mm, there will be tall, broad R waves of at least 30ms long, and the T wave will be upright. When looking at an EKG for a posterior MI, the ST depression is what will be observed in leads V1, V2, and V3. If a posterior MI is suspected, look at the EKG from the back of the paper by flipping it over and holding it to light. This will display the ST depression as ST elevation, prompting you to consider a posterior EKG. It is advised that a posterior EKG with leads V7, V8, and V9 be done. A quick method to do this is by removing leads V4, V5, and V6; placing them in the posterior lead positions; and relabeling them on the EKG. (77).

    Right ventricular MIs can occur, and it is important to assess and treat them appropriately. To assess for a right-sided MI, first look at the standard EKG. If ST elevation is noted in leads II and III, but the ST elevation is greater in lead III than lead II, consider right ventricular involvement. As discussed previously, one method is to do a right-sided EKG, with lead placement along the right side of the chest. The second, quicker way to do this is to take lead V4 and place it on the right side of the chest and mark it as V4R on the EKG (77).

    Another rhythm that can be an indicator of an MI is a bundle branch block. New or suspected new BBBs are to be treated as a MI by providers. But what if you have a copy of an old EKG and the BBB isn’t new, can the patient still be having an MI? The answer is yes. However, it can be challenging to determine what is a change from the MI and what is from the BBB. The Sgarbossa criteria is useful in making these determinations and can also be used for patients who have a pacemaker (77)

     

    Sgarbossa criteria (77):

    • Concordant ST elevation that is greater than 1mm
    • Concordant ST depression that is greater than 1mm
    • Excess discordant ST elevation that is greater than 5mm in leads with negative QRS complexes – these are complexes below the isoelectric line

     

    For reference, concordance means that the ST segment and QRS complex go in the same direction, either both deflecting upwards or downwards. Discordance is what should be seen in a BBB or paced rhythm. This is where the ST segment and the QRS complex go in different directions. Smith et al. created a modification to the Sgarbossa criteria to include a greater than 1mm ST elevation to an S-wave amplitude ratio of greater than 0.25mm (7).

    Another method that has been created, but not validated is the Barcelona criteria. This criterion has greater than 1mm ST deviation concordance or discordance with QRS polarity in any EKG lead. Discordant ST deviation is greater than 1mm in any lead where the R or S points of the QRS complex are less than 6mm (7).

    There is an EKG rhythm that can indicate a future MI which is known as Wellens syndrome. This EKG has a deeply inverted or biphasic T wave in leads V2 and V3. The patient is often pain-free when the rhythm is present, ischemic chest pain can obscure the rhythm by creating a false normal appearance of the T waves in the affected leads. Their cardiac enzymes may not even be elevated. Any patient presenting with chest pain should have serial EKGs done for this reason, since they may be pain-free at a later time. These EKG changes symbolize the critical stenosis of the proximal left anterior descending artery (LAD). This is the artery that provides the left ventricle with blood (65).

    Quiz Questions

    Self Quiz

    Ask yourself...

    1. Do you remember the first patient that you had that was experiencing an MI? What stood out about that patient in your mind?
    2. Patients have a variety of symptoms that can be experienced during an MI, what was the most interesting symptom a patient had during an MI?
    3. Have you ever encountered a patient with Wellens Syndrome? Do you know if they ended up having an MI later?

    Cardiac Assessment:

    A traditional cardiac assessment focuses on more than just the heart; it encompasses aspects of both the neurological and respiratory systems. However, we will begin our focus with the heart.

    Pain may not be a word patients use to describe what they are feeling. As mentioned, they may vocalize discomfort, pressure, cramping, burning, or tightness. Women may have jaw or arm pain as opposed to the traditional chest pain that men may experience. Ask them to rate their pain on a scale of one to ten, looking for changes in the value. An EKG based on pain, discomfort, pressure, cramping, or tightness should be completed within the time frame set by hospital policy.

    The PQRST pneumonic can assist providers in remembering the specific information they need to collect (90).

    P: What provokes, precipitates, or palliates/alleviates the pain or discomfort the patient is feeling? Does it get worse or better when you do certain things, i.e., walk or rest?

    Q: What is the quality of pain or discomfort you are feeling?

    R: Does this pain or discomfort radiate anywhere else in your body? Jaw, arm, back?

    S: Are there associated symptoms with the pain or discomfort? Shortness of breath, dizziness, heartburn?

    T: What time elements are involved? When did it start? Did it stop and come back? Are you currently feeling it now? Was it gradual or did it occur suddenly? Did it wake you up?

    Patients should be asked about palpitations or any experienced abnormal heart rhythms detected on monitoring devices. Many individuals have smartwatches that can detect heart rates and some rhythms. If the patient is wearing one, determine if the device has recorded anything.

    Edema in the legs can be a sign of acute heart failure while pain in the calf can indicate a blood clot that could have traveled from another part of the body (85). In A Fib, the blood can clot in the ventricles due to poor circulation of blood. It will pool until it clots or is ejected from the heart. Once expelled, the clot will travel until it can no longer pass through the veins (63).  Ensure a thorough assessment of the patient’s distal pulses is done as well to determine circulation. The further pulse locations can be an indicator of poor circulation (85).

    Moving on to the respiratory system, we will reflect on the many arrhythmias that have shortness of breath as a sign or symptom. Providers should assess lung sounds to determine if there is any fluid buildup, a sign of acute heart failure. Determine if the shortness of breath is all the time, upon exertion, or at rest. Also, it is important to ask if the patient has been woken from sleep due to a shortness of breath. Sometimes arrhythmias occur at unexpected moments, even in the middle of the night (85).

    Syncope was another common sign or symptom of cardiac arrhythmias due to decreased perfusion to the brain. Providers should determine if the patient currently feels lightheaded or dizzy, if they felt that way in the past, or if they have fainted. They should ask when this feeling happens—at rest, while moving, or both—and if they get any warning signs or auras beforehand. Always ensure you ask the patient to describe what happened so it can be added to the assessment (85).

     

    A full medical history should be obtained, with a special focus on any past cardiac medical history the patient or their family has. Providers may consider asking the following questions:

    • Have you been diagnosed with coronary artery disease, high blood pressure, peripheral vascular disease, valve problems, heart failure, high cholesterol, or other heart conditions?
    • Have you had a heart attack or stroke in the past?
    • Have you had any surgical procedures to help with your heart function? This may include things like ablation or stent placement.

     

    Asking about medications can assist providers in determining any missed diagnoses with the patient while asking about social history can provide information about smoking, illicit drug use, alcohol consumption, and exercise habits (85).

    Quiz Questions

    Self Quiz

    Ask yourself...

    1. Have you seen changes in the patients admitted to your facilities that you could correlate to these indications?
    2. Do you agree with this list? Is there anything you feel should be added or removed? Why?
    3. Are there any time frames (how long a patient is on a telemetry monitor) that you think should be adjusted?
    4. Do you think sending patients home with wearable monitors could be used in the future to prevent admission in some of the patients who meet the criteria for admission with telemetry?

    Conclusion

    Thanks to advancements within the medical profession, cardiac telemetry can be greatly beneficial to patients in and outside of the hospital setting. From devices you can carry, to devices implanted inside someone, patient outcomes have improved for identifying, treating, and managing cardiac arrhythmias that had once been deemed unmanageable. With proper knowledge of EKG rhythms, nurses can confidently provide the proper care for their patients by being an advocate for those they care for.

     

     

    Heart Failure Updates

    Introduction   

    In 1997, Heart Failure (HF) was designated an epidemic due to the significant increase in hospitalizations. (2) This increase in hospitalizations appears to be due to accurate management of HF patients who re-hospitalize for stabilization and medication management rather than a new diagnosis or end-stage disease.

    HF occurs when the heart is too weak to pump blood to the body and lungs. The blood then backs up into the heart, lungs, and lower extremities, causing less blood supply to the body. HF can also be so severe that it can cause death in patients. (1)

    It is crucial for nurses to understand the pathophysiology of HF, risk factors, and what education and treatment a nurse can incorporate in the plan of care, which will slow the progression of disease and maintain quality of life.

    Quiz Questions

    Self Quiz

    Ask yourself...

    1. How can you find the costs associated with HF patients at your place of work? What treatments are helping manage HF patients?
    2. How would you assess an HF patient on your initial encounter as a nurse?

    Statistical Evidence/Epidemiology

    Epidemiologists study a disease's incidence, mortality, and prevalence to predict health care costs, how many people have a disease, how it affects society, and when the numbers of a disease change.

    According to the CDC, there are approximately 6.2 million patients with heart failure in the United States. The diagnosis was noted on 13.8% of death certificates in 2018. (2) $30.7 billion was spent on HF in 2012, including health care costs, days away from work, and medications that treat HF.

    Although HF is higher in the elderly population, the more significant number of patients ages 35 and above who die with HF are concentrated in the southeast, southwest, Indiana, Wisconsin, and Illinois, with some counties in Utah, Oregon, Montana, South Dakota, and Nebraska.

    Readmission rates declined when the Hospital Readmission Reduction Program (HRRP) began in 2012 to reduce costs and deliver care more safely.

    Hospitals are penalized by the Centers for Medicare and Medicaid to lower readmission rates to less than 30 days for some diagnoses, and HF was among them. Hospitals began to look closer at the readmission rates, which helped them to focus on improved management. (2) . Using the information below, nurses can better assess the patient and add more information to their care plan.

     

    The classifications of HF as defined by the New York Heart Association are:
    • No symptoms with regular physical activity.
    • Some mild symptoms with physical activity but not at rest
    • Comfortable at rest but with moderate symptoms with some minor physical activity.
    • Severe shortness of breath with rest. (2)

    Providers typically use echocardiograms to measure heart failure using the ejection fraction (EF) percentage. Ejection fraction demonstrates the blood pumping rate from the left ventricle to the body.

    An EF of below 30% indicates severe disease, while an EF at or above 50% indicates milder or no condition. Left ventricular failure with an EF of 50% or above is considered HF with preserved EF. An EF of 30% or below is considered HF with reduced EF. There is now a new category called HF with mid-range, which shows an EF of 40%-50%.

    Approximately 15% of the HF population shows mid-range EF.

    Incidence - is the number of new disease cases in certain patients. In HF, this number also helps scientists understand how the prevalence of the disease results from a lifestyle change. These studies aid in determining the burden of HF on society, which in turn helps to make changes in public policy and, eventually, how HF patients are treated. "For HF, incidence as a measure of new cases is particularly helpful to assess how the occurrences of HF might have changed over time as a result of changes in risk factors." (2)

    Prevalence - measures the commonality of a disease, in this case HF, in the at-risk population at or over a given time. It also measures how often an HF patient will be encountered. (6)

    Mortality - CHF is one of the top causes of death. Mortality rates are high, and the data shows that 50% of HF patients die at or within five years of diagnosis. (2) More recent studies show mortality rates in HF are increasing, which may be due in part to an aging population.

     

    Quiz Questions

    Self Quiz

    Ask yourself...

    1. Where can you find more information on the epidemiology of HF?
    2. Where do epidemiologists get their information?
    3. Can you define the difference between incidence and prevalence?

    Etiology and Pathophysiology  

    Heart failure is often caused by an injury to the heart's muscle, such as Myocardial Infarction (MI), valvular regurgitation, stenosis of the heart's valves, and arrhythmia. (4) It is essential that the provider determines the cause to treat these patients appropriately. 

    The most common cause of HF is cardiovascular disease. When fatty deposits or plaque buildup in the vessels supplying the heart, the arteries become narrowed and decrease blood flow to the heart muscle. This can cause ischemia (lack of oxygen) to the area of the heart's power involved, causing an MI. This, in turn, causes damage to the heart's muscle, reducing its ability to pump normally. 

    There are two main types of HF:

    • Left ventricular HF or systolic (LHF)
    • Right ventricular HF or diastolic (RHF) 

    LHF occurs when the damage to the left ventricle occurs, and RHF occurs when the damage is to the right ventricle. 

    The following Table taken from the National Institutes of Health shows comorbidities for Systolic and Diastolic HF: 

    Systolic (LHF) 

    • Coronary Heart disease 
    • Arterial Hypertension 
    • Valvular Heart Disease 
    • Arrhythmias 
    • Inflammatory disease 
    • Idiopathic cardiomyopathy 
    • Toxic Cardiomyopathy (alcohol)

    Diastolic (RHF) 

    • Diabetes Mellitus 
    • Arterial Hypertension 
    • Valvular Heart Disease (pressure load) 
    • Hypertrophic Cardiomyopathy 
    • Restrictive Cardiomyopathy 
    • Constrictive Pericarditis 
    • Amyloidosis (storage disease) 

     

    HF causes volume overload in the ventricles of the heart. This is due to enlargement and stiffness of the ventricles, so they cannot pump enough blood to the lungs and the body. (1,4) The nurse can utilize this information to care for the patient and implement essential treatments. 

    Genetics also play a role in HF but are varied and complex. Studies have found more than 100 genes that may contribute to cardiomyopathy. Depending on where the failure occurs, more genetic testing is recommended in some instances: Left, Right, or Biventricular determines what signs and symptoms may be present in a patient.  

    In a patient with an MI or volume/pressure overload, the whole heart will change in structure and function. There will be hypertrophy of the Left ventricle and the dilatation of the chambers, which will cause further deterioration in cardiac function. (4) 

    Certain medications may also lead to HF in some patients. These are the diabetic medications Actos and Avandia. NSAIDS (non-steroidal inflammatory drugs) and certain medicines that treat hypertension, cancer, blood dyscrasias, mental health, lung urinary issues, and infections. (1) 

    Aging also contributes as the heart's ability to work decreases over time. Too much alcohol and smoking are also important considerations. Heart failure may also cause complications such as kidney damage and failure, more heart problems, and liver disease caused by the backup of fluid that the liver cannot handle. 

    The photo below shows the difference between a normal heart and an enlarged one (12). 

    Preventable and non-preventable risk factors for heart disease are:  

    • Poor diet  
    • Smoking 
    • Lack of exercise 
    • Alcoholism 
    • Obesity 
    • Genetics/Race-non preventable         

     

    It is also known that Hispanic women are at higher risk for diabetes, which can lead to heart disease if their diabetes is not managed well. Also, African American men are at higher risk for heart disease, possibly leading to HF. 

    Interestingly, some studies have shown that the incidence of hospitalizations has declined. This may be due to early diagnosis, better use of medications and newer devices, earlier and ongoing patient education of risk factors, and stellar outpatient and preventive care of those patients living with HF or at risk in the community (2). 

    Quiz Questions

    Self Quiz

    Ask yourself...

    1. Why do you think certain diseases and medications contribute to heart disease?
    2. How would you plan to educate your new patient on this disease?
    3. What are the mechanisms of HF that may cause other diseases?

    Diagnostic and Screening Tools for Heart Failure (HF) 

    Essential diagnostic screening tools are heart rate, cholesterol testing, blood pressure, and weight. Blood pressure measurement is one of the most critical tests since it can have no symptoms.  

    If high, it significantly increases the risk of cardiac disease. Fortunately, diet exercise can control blood pressure to lose weight if needed, and medications.  

    According to the American Heart Association, the standard for blood pressure is 120/80 or below and should be measured starting at age 20. (5) Next is the fasting cholesterol profile. Again, starting at age 20, a fasting lipid profile should be done. (5) This will give the provider and patient a baseline to follow and assist nurses in developing and implementing care plans. 

    The following chart describes lab values for cholesterol. As you can see, the values in red are at the highest risk for cardiovascular disease, which could lead to HF. 

    (13)

    Body habitus is another crucial factor in predicting CAD. Body mass index (BMI), Waist measurements, and body structure can help predict how at risk a patient is for many diseases, including CAD, diabetes, atrial fibrillation, HF, and stroke. (7) 

    The typical Western diet is full of fats and sugars. In the US, many processed foods containing high salt, fat, and sugar are used. 

    These foods are unhealthy for the body and cause obesity and poor health. The Mediterranean diet, in turn, is full of fresh fruits and vegetables, lean meat, and a few processed foods. This is the most recommended diet for all populations. 

    High blood glucose is another indicator of poor health. Insulin resistance is the precursor to diabetes. A patient has insulin resistance when the body's muscles and tissues cannot respond to insulin, so glucose increases in the blood. (5)  

    Causes of insulin resistance are thought to be obesity with a large waist measurement. Blood glucose is usually tested with routine blood work. This gives the provider knowledge if a patient is at risk for diabetes and, therefore, heart disease. (5) Smoking and lack of physical activity can cause poor health, which may lead to cardiovascular disease. 

    Echocardiogram, Holter monitoring, stress tests, and nuclear stress tests are routinely used when a patient presents with symptoms of or has known cardiovascular disease. These tests provide a look at heart function and are used to determine disease progression or maintenance. 

     

    Quiz Questions

    Self Quiz

    Ask yourself...

    1. What are the waist measurements in males and females that are considered for a diagnosis of obesity?  
    2. How would you care for a patient undergoing this testing using the nursing process? 
    3. Why is diabetes a risk factor for HF?

    Medication Management 

    Treating HF with medications can reduce disease progression, and relieve symptoms of dyspnea, fatigue, and edema.  Several classes of drugs can be used to treat HF.  Each one may be used to treat a different symptom. 

    The classes are as follows:

    Angiotensin-Converting Enzyme (ACE) Inhibitors 

    These medications open blood vessels decreasing blood pressure and lowering the heart’s work to keep HF from worsening. (6) 

    Some common ACE inhibitors are: 
    • Captopril 
    • Enalapril 
    • Lisinopril 
    • Ramipril  
    Angiotensin-Receptor Blockers (Arbs)
    • Losartan
    • Valsartan
    Angiotensin-Receptor Neprilysin Inhibitors (Arnis) 

    Entresto is a drug combination in the class of Angiotensin-receptor neprilysin inhibitors (ARNIs). ARNIs limit the enzyme neprilysin from breaking down natural substances in the body.  By limiting this enzyme, the arteries can open to increase blood flow.  This drug also limits the retention of sodium. (7) 

    Beta Blockers  

    Beta-blockers work to slow down the heart rate and increase blood flow by widening blood vessels. This also lowers blood pressure. (9) 

    Common Beta Blockers are: 

    • Atenolol 
    • Bisoprolol 
    • Carvedilol 
    • Labetalol 
    • Metoprolol succinate 
    • Metoprolol tartrate 
    • Nadolol 
    • Propranolol 

     

    Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors 

    Jardiance and Farxiga are Sodium-glucose cotransporter-2 (SGLT2) inhibitors that were designed to treat diabetes, but they have been found to be cardio-protective. (7) 

     

    Diuretics 

    Diuretics allow the body to release extra fluid and sodium through the kidneys.  They cause increased urination so should be taken earlier in the day. 

    Most common diuretics are: 

    • Lasix 
    • Bumex 
    • Torsemide 
    • Diuril 
    • Hydrochlorothiazide (HCTZ) 
    • Metolazone 

     

    Other medications can be prescribed depending on the patient's needs, such as anticoagulants to keep the blood thin, statins to lower cholesterol, and Digoxin to control heart rate and increase pumping strength. Calcium channel blockers allow the heart muscle to relax, thereby reducing blood pressure and circulation within the heart. Potassium may be used with certain diuretics that cause potassium to leave the body.  

    It is needed to keep the heart's rhythm in control. Oxygen may also increase its amount in the blood, assisting with dyspnea and activity tolerance. (7) It is the nurse's responsibility to evaluate these medications and interventions for plan updates. 

     

    Quiz Questions

    Self Quiz

    Ask yourself...

    1. Which medications are the first line in controlling HF?
    2. Where can you find side effects of these medications?
    3. What would your care plan look like for a patient with HF?

    Other Interventions 

    Several types of surgery can be utilized for the most severe cases of HF. Bypass surgery has been used for many years. This procedure bypasses blocked coronary arteries, allowing for better blood flow to the heart muscle.  

    Replacing damaged or stenosed heart valves will assist blood flow within the heart chambers. In some patients, biventricular pacing with a pacemaker allows both sides of the heart to work in sync. (10) An ICD, or implantable defibrillator, can shock the heart from a life-threatening rhythm back to normal.  

    The ventricular assist device or VAD can assist the ventricles to pump blood out to the body. (10) This device can be used either waiting for a transplant or permanently.  

    Heart Transplants can be used as the last intervention, with a success rate of 88% after one year and 75% after five. If a patient has sleep apnea, it can be linked to heart failure. In this case, an evaluation and treatment will be performed. (10)

    Quiz Questions

    Self Quiz

    Ask yourself...

    1. Where can you learn more about assistive devices for HF?
    2. How many arteries can be bypassed in surgery at one time?
    3. How would you care for a person with a surgical device?

    Current areas of research in HF are producing more effective drug therapy, genetic testing, non-surgical devices, transplants, and mechanical support. (8) 

    The research is now studying drugs that improve physical symptoms when added to the standard drug treatment and care. These drugs have shown improvement in reducing hospitalizations. 

    The newer diabetic medications Jardiance, Invokana, and Farxiga are being studied on HF patients without diabetes to learn if they will improve function and risk reduction of MI, stroke, or cardiovascular death. (8) 

    Non-invasive imaging such as MRI, ultrasound, nuclear testing, and radiology are being researched in the hope that advancing these technologies will "provide additional information about coronary arteries and heart tissue, coronary strain, the function and structure of the heart." (8)  

    Genetic testing is under investigation to help determine if there is an inherited disease, especially in specific cardiomyopathies. These cardiomyopathies present differently and may be treated with differing modalities. 

    One of the newest areas of HF management and treatment is remote monitoring. Nurses are at the forefront of home monitoring in many areas as they are the clinicians making home visits. 

    New types of VADs are emerging as treatments for advanced illnesses. They are being manufactured to be more durable and portable. (8) 

    Quiz Questions

    Self Quiz

    Ask yourself...

    1. Where can you find new research studies on HF? 
    2. Where can you go to get educated on new devices? 
    3. Who is conducting the new research?

    Conclusion

    As discussed in this course, Heart Failure affects over 6 million people in the US. Age, lifestyle, race, and genetics may predispose a patient to this disease.

    HF burdens society and health care costs due to missed work, rehospitalizations, and poor outcomes. As a nurse, learning the mechanisms of HF is imperative. Understanding etiology, statistics, pharmaceuticals, and other interventions will assist nurses in administering the best care.

    New research shows how emerging medications, improved implantable devices, and surgery can improve outcomes. However, patient education and prevention are vital to caring for HF patients.

    Hypertension Updates

    Introduction

    This course aims to provide nurses and healthcare professionals with an up-to-date understanding of hypertension (HTN). The course covers epidemiological evidence, etiology, diagnostic tools, medication management, other interventions, and future research on HTN. 

    Hypertension, or high blood pressure, is a chronic condition and a significant risk factor for heart disease, stroke, kidney failure, and other serious health problems. The American College of Cardiology defines hypertension as systolic blood pressure greater than 130 mmHg or diastolic blood pressure greater than 80 mmHg [1].

    Statistical Evidence/Epidemiology 

    According to the Centers for Disease Control and Prevention (CDC), hypertension afflicts 108 million Americans and contributes to almost 500,000 deaths per year in the United States [2]. The prevalence of hypertension varies by race and ethnicity, with non-Hispanic Black adults having the highest majority (57.1%), followed by Hispanic adults (43.7%) and non-Hispanic White adults (43.6%).  

    Hypertension is also more common among older adults, with (74.5%) of adults aged 60 and over having high blood pressure [3]. Despite the high prevalence of hypertension, less than a quarter of all adults with hypertension in the United States have their blood pressure under control [2].  

    This leaves millions at risk for serious health problems from uncontrolled hypertension, such as heart disease, stroke, kidney failure, and eye problems. In 2021, high blood pressure was a primary or contributing cause of death for more than 691,095 Americans [4]. 

     

    [31] 

    Quiz Questions

    Self Quiz

    Ask yourself...

    1. How do the current epidemiological statistics about hypertension affect healthcare planning and resource allocation?  
    2. Given that hypertension is a significant public health problem and a major risk factor for serious health problems, what are the essential things that nurses and healthcare professionals should know about hypertension to manage their patients? 
    3. Why do you think there exists such a pronounced disparity in the prevalence of hypertension among different racial and ethnic groups, and what societal and medical strategies might be employed to address this? 

    Etiology/Pathophysiology of Hypertension 

    Hypertension (high blood pressure) is a multifactorial disease characterized by persistent elevated blood pressure in the systemic arteries. Understanding hypertension's etiology, pathophysiology, and sequela is crucial for effective management and treatment.  

    There are two main types of hypertension: primary hypertension and secondary hypertension. Primary or essential hypertension (idiopathic hypertension), which accounts for about 80-95% of all cases, has no identifiable cause and results from complex interactions between genetic, environmental, and other unknown factors [5].  

    The cause of secondary hypertension (15-30% of cases) is often an underlying medical condition, such as kidney disease, adrenal gland tumors, diabetes, or thyroid disease [6]. Family history plays a role, although science has identified no genetic factor as the "hypertension gene" [7].  

    A key mechanism in hypertension is the imbalance between the forces that constrict and dilate blood vessels. This imbalance can be caused by several factors, including increased activity of the sympathetic nervous system, which leads to vasoconstriction, increased production of vasoconstrictor hormones, such as angiotensin II and aldosterone, a decreased output of vasodilator hormones, such as nitric oxide, and structural changes in the blood vessels, such as thickening of the vessel walls [8]. 

    The most understood mechanism of hypertension involves increased peripheral vascular resistance due to constriction of small arterioles. The Renin-Angiotensin-Aldosterone System (RAAS) is a hormonal system that regulates blood pressure. Dysfunction of the RAAS can lead to fluid retention and vasoconstriction [9]. Endothelial dysfunction involves the inner lining of the blood vessels (endothelium) and the release of nitric oxide, which promotes blood vessel relaxation. The dysfunction of nitric oxide is a primary contributor to hypertension [10]. 

     

    Secondary hypertension often involves: 

    • The kidneys and volume overload. 
    • Leading to elevated blood pressure. 
    • Often affecting younger patients and those with resistant or refractory hypertension. 

     

    The typical secondary causes of hypertension include: 

    • Primary aldosteronism (PA). 
    • Renovascular disease. 
    • Chronic kidney disease (CKD). 
    • Obstructive sleep apnea (OSA). 
    • Drug-induced or alcohol-induced hypertension [11]. 

     

    Overactivation within the sympathetic nervous system can result in increased heart rate (tachycardia) and vasoconstriction, both of which can cause a temporary elevation in blood pressure. Within the metabolic process, insulin resistance has been associated with endothelial dysfunction and hypertension [12]. 

    Quiz Questions

    Self Quiz

    Ask yourself...

    1. What underlying mechanisms or factors might contribute to the development of primary hypertension when classified as having no identifiable cause, and how might this classification influence our approach to treatment and management? 
    2. What common myths and misconceptions about hypertension have you encountered in your practice? 
    3. How do mechanisms like vascular resistance, RAAS dysfunction, and endothelial dysfunction interact or possibly counteract each other in the pathophysiology of hypertension, and what are the implications of this interplay for targeted therapeutic interventions? 
    4. If hypertension is a complex disease with multiple causes, how can we develop effective treatments and prevention strategies? 

    Diagnostic and Screening Tools 

    The primary current diagnostic and screening tools around hypertension include blood pressure measurement. Blood pressure consists of systolic blood pressure (SBP) and diastolic blood pressure (DBP).  

    SBP is the pressure when the heart is beating, and DBP is the pressure when the heart is resting. A diagnosis of hypertension can be established when the Systolic Blood Pressure (SBP) is 130 mmHg or above or when the Diastolic Blood Pressure (DBP) is at least 80 mmHg [1].  

    The American Heart Association (AHA) recommends that all adults have their blood pressure checked at least once a year. People with risk factors for hypertension, such as obesity, diabetes, and kidney disease, should have their blood pressure checked more often [13]. 

    Secondary tools for evaluating hypertension include ambulatory blood pressure monitoring (ABPM). ABPM is a more accurate way to measure blood pressure, measuring blood pressure over 24 hours. ABPM is an integral part of hypertensive care [14].  

    Urine tests can check for protein in the urine, a sign of kidney damage. Kidney damage is a risk factor for hypertension. Blood tests can be used to check for other medical conditions that can cause hypertension, such as diabetes and kidney disease, cholesterol levels, and other risk factors for heart disease.  

    Hormonal Tests can measure hormones produced by the adrenal and thyroid glands, which can help diagnose secondary hypertension. Regardless of the diagnostic or screening tools, early diagnosis and management of hypertension save lives [15]. 

    Quiz Questions

    Self Quiz

    Ask yourself...

    1. What are the advantages and disadvantages of using blood pressure measurement as the primary diagnostic and screening tool for hypertension? 
    2. What are some of the challenges of implementing ABPM as a routine screening tool for hypertension? 
    3. How can we improve the early diagnosis and management of hypertension in all populations? 
    Imaging and Other Diagnostic Tests 

    Ultrasound of the Kidneys: To rule out kidney abnormalities. 

    Echocardiogram: To assess heart function and structure. Useful if hypertension has been longstanding. 

    Eye Exam: A fundoscopic examination can reveal changes in the retinal blood vessels, indicative of chronic hypertension. 

    Telemedicine: Remote monitoring can be helpful for ongoing assessment and titration of treatment. 

    Healthcare Apps: Smartphone apps can log and track blood pressure readings over time. 

    Quiz Questions

    Self Quiz

    Ask yourself...

    1. Considering the variety of diagnostic and screening tools available for hypertension—from traditional blood pressure measurements to digital devices like telemedicine and healthcare apps—how can healthcare providers ensure that they employ the most practical combination of methods for accurate diagnosis and long-term management of the condition? 
    2. How does an early diagnosis contribute to better management and prognosis in hypertension patients? 

    Medication Management 

    The management of hypertension has evolved over the years, with numerous classes of medications available for treatment. The type of medication best suited for your patients will depend on their needs and health history.  

    Treatment strategies often begin with monotherapy, a single drug, usually a diuretic, beta-blocker, ACE inhibitor, or Angiotensin II receptor blocker (ARBs) [16]. Combination therapy for patients with stage 2 hypertension or those not reaching the target BP with monotherapy, which may include two or more drug classes, is also used.[16].  

    Step therapy involves starting with one drug and adding others to achieve the desired effect. A tailored approach is considered if comorbid conditions are present, such as diabetes or heart failure, which may influence drug choice. 

    Several standard classes of antihypertensive medications are used to treat hypertension, including first-line thiazides such as hydrochlorothiazide, which help rid excess salt and water and lower blood pressure [17]. Angiotensin-converting enzyme (ACE) inhibitors such as lisinopril and ramipril block the production of angiotensin II, a hormone that narrows blood vessels.  

    Angiotensin II Receptor Blockers (ARBs) such as losartan and valsartan which inhibit the action of angiotensin II, leading to vasodilation [17]. Beta-blockers such as atenolol or metoprolol slow the heart rate and reduce the force of the heart's contractions, which can lower blood pressure [17].  

    Calcium channel blockers such as amlodipine and diltiazem relax the muscles of the blood vessels by inhibiting the movement of calcium into vascular smooth muscle cells, thus lowering blood pressure [17]. Alpha-blockers such as doxazosin work by blocking alpha-adrenergic receptors, leading to vasodilation. Vasodilators such as hydralazine and minoxidil relax the muscles in blood vessel walls [17]. 

    Central action agents such as clonidine, methyldopa, and moxonidine work on the central nervous system to lower blood pressure [17]. Moxonidine is a new-generation antihypertensive drug that works by activating imidazoline-I1 receptors in the brain, and it may be used when other antihypertensive drugs, such as thiazides, beta-blockers, ACE inhibitors, and calcium channel blockers, are not appropriate or have failed [18].  

    Thiazide-like diuretics such as chlorthalidone and indapamide have found increased use for their more prolonged duration of action and better cardiovascular outcomes when compared to traditional thiazides [19]. New evidence-based medications are coming into play, such as angiotensin receptor-neprilysin inhibitors (ARNIs), and a clinical trial is underway to test the effectiveness of a new drug called finerenone in preventing heart failure and kidney disease in people with hypertension and diabetes [20] [21]. 

    Due to their safety profiles, there are special considerations with hypertensive management, including methyldopa and labetalol for pregnancy [22].  

    For older people, care is taken to avoid overtreatment, considering the risks of low blood pressure. For patients with chronic kidney disease (CKD), ACE inhibitors and ARBs are often favored due to their renal protective effects.  

    Generics are preferred when appropriate to reduce patient costs [23]. Digital adherence tools, including smartphone apps and telemedicine platforms, monitor patient compliance and adjust treatment as necessary. 

     

    [32] 

    Quiz Questions

    Self Quiz

    Ask yourself...

    1. What challenges do healthcare providers face in medication compliance among hypertensive patients? 
    2. Given the myriad antihypertensive drug classes and treatment strategies available, coupled with considerations for special populations such as pregnant women, older adults, and those with chronic kidney disease, how can healthcare providers effectively customize treatment plans while maintaining a consistent standard of care across different patient profiles? 

    Other Interventions  

    Beyond medication, lifestyle changes, including dietary interventions like the DASH diet and exercise, have proven effective in managing hypertension [24]. The DASH diet focuses on a high intake of fruits, vegetables, and low-fat dairy foods and is low in saturated and total fat.  

    A reduction in dietary sodium has been shown to lower blood pressure, with a general recommendation to consume less than 2,300 mg per day, with an ideal limit of 1,500 mg for most adults [24]. Regular aerobic exercise such as walking, jogging, or swimming can lower blood pressure.  

    Weight loss of even 5-10% can significantly impact reducing blood pressure [25]. Alcohol moderation and smoking cessation can also lead to blood pressure reduction. 

    Behavioral therapies, including stress management techniques such as deep breathing, meditation, and relaxation exercises, can help reduce short-term spikes in blood pressure. There is some evidence that suggests that Cognitive CBT can be effective in managing hypertension [26].  

    Biofeedback can help manage stress triggers and measure physiological functions like heart rate and blood pressure [26]. Although evidence is mixed, some studies suggest acupuncture can help lower blood pressure.  

    Renal denervation is an invasive procedure using radiofrequency energy to destroy kidney nerves contributing to hypertension. Central sleep apnea therapy can treat central sleep apnea and lower blood pressure.  

    Weight loss surgery can be an effective way to lower blood pressure in people who are obese or overweight. Several stress management techniques, such as yoga, meditation, and deep breathing, can be helpful. 

    Self-monitoring and regular medical check-ups can ensure that the treatment plan is effective and can be adjusted as needed. Remote consultations can offer more frequent touchpoints for adjustments in treatment plans.  

    Various mobile applications can help patients track blood pressure readings, medication schedules, and lifestyle changes. Community-based interventions to educate the public about hypertension risks, prevention, and management can be effective.  

    On a policy level, changes and initiatives that reduce sodium in processed foods can have a broader societal impact [27]. 

    Quiz Questions

    Self Quiz

    Ask yourself...

    1. How do non-pharmacological interventions compare with medication management in terms of effectiveness and patient compliance? 
    2. What roles do genetics and lifestyle factors play in the development of hypertension? 
    3. How might the interactions among genetic factors, diet, obesity, lifestyle choices, and psychological elements contribute to the complex etiology of primary hypertension, and what does this complexity imply for diagnosing and treating secondary hypertension?

    Upcoming Research 

    Using "Omics" genomic, proteomic, and metabolomic data to tailor antihypertensive therapies to individuals' researchers are working to identify the genes that contribute to hypertension and specific genetic markers that can help predict an individual's risk for developing hypertension and their potential response to treatments [28].  

    This information could be used to create new genetic tests to identify people who are at risk of developing the condition. Personalized medicine seeks to create customized approaches to managing hypertension, which would involve tailoring treatment to the individual's needs and risk factors.  

    Non-invasive treatments, such as devices worn on the body to deliver medication or stimulate the nerves, may also be effective. Researchers are developing a new type of blood pressure monitor that can be worn on the wrist and measure blood pressure throughout the day. 

    A study is underway to investigate the use of artificial intelligence to develop personalized treatment plans for people with hypertension. With predictive analytics, AI models are trained to predict hypertension risk and disease progression using large-scale electronic health records [29]. 

    In the area of new therapeutic targets, researchers are looking into novel ways to improve endothelial function and vascular health. Studies into how the gut microbiome may influence blood pressure regulation offer potential for new treatment modalities [30]. Research on how diet interacts with genes within the gut microbiome may affect blood pressure. 

    Quiz Questions

    Self Quiz

    Ask yourself...

    1. How might advancements in technology and research change the landscape of hypertension management in the next decade? 
    2. How can we balance the potential benefits of personalized medicine for hypertension with the challenges of ensuring that everyone has access to these new treatments? 

    Awareness and Patient Education 

    What your patients should know: 
    • Early diagnosis and treatment of hypertension are essential for preventing complications. 
    • There are several different types of medications available to treat hypertension. 
    • Lifestyle changes, such as eating a healthy diet, exercising regularly, and maintaining a healthy weight, can also help to lower blood pressure. 

     

    Nurses and healthcare professionals should be aware of the following: 
    • Nurses and healthcare professionals play a vital role in educating patients about hypertension and helping them manage their condition. 
    • The latest epidemiological statistics on hypertension, including its prevalence, risk factors, and impact on public health. 
    • The etiology and pathophysiology of hypertension, including the different types of hypertension and their underlying causes. 
    • The diagnostic tools used to diagnose hypertension include blood pressure measurement, ambulatory blood pressure monitoring, urine tests, blood tests, and imaging tests. 
    • The different types of medications available to treat hypertension, as well as their side effects and interactions. 

     

    Nurses and healthcare professionals can help patients to manage their hypertension by: 
    • Educating patients about hypertension and its risks. 
    • Helping patients develop a treatment plan that includes lifestyle changes and medications. 
    • Monitoring their blood pressure and adjusting their treatment plan as needed. 
    • Providing support and encouragement. 

    By working together, nurses and healthcare professionals can help patients manage their hypertension and reduce their risk of complications. 

    Quiz Questions

    Self Quiz

    Ask yourself...

    1. What are your key takeaways from this course, and how do you plan to implement these learnings in your clinical practice? 

    Conclusion

    Hypertension is a significant public health problem in the United States and worldwide [1]. It is a chronic condition that can lead to serious health problems like heart disease, stroke, kidney failure, and eye problems. However, despite its complexity, hypertension is manageable with lifestyle changes, medications, and the potential information from future genomic discoveries [25] [17]. 

    GI Bleed: An Introduction

    Introduction   

    Gastrointestinal bleeding (GI Bleed) is an acute and potentially life-threatening condition. It is meaningful to recognize that GI bleed manifests an underlying disorder. Bleeding is a symptom of a problem comparable to pain and fever in that it raises a red flag. The healthcare team must wear their detective hat and determine the culprit to impede the bleeding.  

    Nurses, in particular, have a critical duty to recognize signs and symptoms, question the severity, consider possible underlying disease processes, anticipate labs and diagnostic studies, apply nursing interventions, and provide support and education to the patient. 

    Epidemiology  

    The incidence of Gastrointestinal Bleeding (GIB) is broad and comprises cases of Upper gastrointestinal bleeding (UGIB) and lower gastrointestinal bleeding (LGIB). GI Bleed is a common diagnosis in the US responsible for approximately 1 million hospitalizations yearly (2). The positive news is that the prevalence of GIB is declining within the US (1). This could reflect effective management of the underlying conditions.  

    Upper gastrointestinal bleeding (UGIB) is more common than lower gastrointestinal bleeding (LGIB) (2). Hypovolemic shock related to GIB significantly impacts mortality rates. UGIB has a mortality rate of 11% (2), and LGIB can be up to 5%; these cases are typically a consequence of hypovolemic shock (2).  

    Certain risk factors and predispositions impact the prevalence. Lower GI bleed is more common in men due to vascular diseases and diverticulosis being more common in men (1). Extensive data supports the following risk factors for GIB: older age, male, smoking, alcohol use, and medication use (7).  

    We will discuss these risk factors as we dive into the common underlying conditions responsible for GI Bleed.  

    Quiz Questions

    Self Quiz

    Ask yourself...

    1. Have you ever cared for a patient with GIB?
    2. Can you think of reasons GIB is declining in the US?
    3. Do you have experience with patients with hypovolemic shock?

    Etiology/ Pathophysiology

    Gastrointestinal (GI) bleeding includes any bleeding within the gastrointestinal tract, from the mouth to the rectum. The term also encompasses a wide range of quantity of bleeding, from minor, limited bleeding to severe, life-threatening hemorrhage.

    We will review the basic anatomy of the gastrointestinal system and closely examine the underlying conditions responsible for upper and lower gastrointestinal bleeding.

    Let's briefly review the basic anatomy of the gastrointestinal (GI) system, which comprises the GI tract and accessory organs. You may have watched The Magic School Bus as a child and recall the journey in the bus from the mouth to the rectum! Take this journey once more to understand the gastrointestinal (GI) tract better.

    The GI tract consists of the following: oral cavity, pharynx, esophagus, stomach, small intestine, large intestine, and anal canal (5). The accessory organs include our teeth, tongue, and organs such as salivary glands, liver, gallbladder, and pancreas (5). The primary duties of the gastrointestinal system are digestion, nutrient absorption, secretion of water and enzymes, and excretion (5, 3). Consider these essential functions and their impact on each other.

     

     

     

    This design was created on Canva.com on August 31, 2023. It is copyrighted by Abbie Schmitt, RN, MSN and may not be reproduced without permission from Nursing CE Central. 

     

    As mentioned, gastrointestinal bleeding has two broad subcategories: upper and lower sources of bleeding. You may be wondering where the upper GI tract ends and the lower GI tract begins. The answer is the ligament of Treitz. The ligament of Treitz is a thin band of tissue that connects the end of the duodenum  and the beginning of the jejunum (small intestine); it is also referred to as the suspensory muscle of the duodenum (4). This membrane separates the upper and lower GI tract. Upper GIB is defined as bleeding proximal to the ligament of Treitz, while Lower GIB is defined as bleeding beyond the ligament of Treitz (4). 

     

    Upper GI Bleeding (UGIB) Etiology 

    Underlying conditions that may be responsible for the UGIB include: 

    • Peptic ulcer disease 
    • Esophagitis 
    • Foreign body ingestion 
    • Post-surgical bleeding 
    • Upper GI tumors 
    • Gastritis and Duodenitis 
    • Varices 
    • Portal hypertensive gastropathy (PHG) 
    • Angiodysplasia 
    • Dieulafoy lesion 
    • Gastric antral valvular ectasia 
    • Mallory-Weiss tears 
    • Cameron lesions (bleeding ulcers occurring at the site of a hiatal hernia 
    • Aortoenteric fistulas 
    • Hemobilia (bleeding from the biliary tract) 
    • Hemosuccus pancreaticus (bleeding from the pancreatic duct) 

    (1, 4, 5, 8. 9) 

     

    Pathophysiology of Variceal Bleeding. Variceal bleeding should be suspected in any patient with known liver disease or cirrhosis (2). Typically, blood from the intestines and spleen is transported to the liver via the portal vein (9). The blood flow may be impaired in severe liver scarring (cirrhosis). Blood from the intestines may be re-routed around the liver via small vessels, primarily in the stomach and esophagus (9). Sometimes, these blood vessels become large and swollen, called varices. Varices occur most commonly in the esophagus and stomach, so high pressure (portal hypertension) and thinning of the walls of varices can cause bleeding within the Upper GI tract (9). 

     

    Liver Disease + Varices + Portal Hypertension = Recipe for UGIB Disaster 

     

    Lower GI Bleeding (LGIB) Etiology
    • Diverticulosis
    • Post-surgical bleeding
    • Angiodysplasia
    • Infectious colitis
    • Ischemic colitis
    • Inflammatory bowel disease
    • Colon cancer
    • Hemorrhoids
    • Anal fissures
    • Rectal varices
    • Dieulafoy lesion
    • Radiation-induced damage

    (1, 4, 5, 9)

     

    Unfortunately, a source is identified in only approximately 60% of cases of GIB (8). Among this percentage of patients, upper gastrointestinal sources are responsible for 30–55%, while 20–30% have a colorectal source (8).

    Quiz Questions

    Self Quiz

    Ask yourself...

    1. How is the GI Tract subdivided?
    2. Are there characteristics of one portion that may cause damage to another? (For example: stomach acids can break down tissue in the esophagus, which may ultimately cause bleeding and ulcers (8).
    3. Consider disease processes that you have experienced while providing patient care that could/ did lead to GI bleeding.

    Laboratory and Diagnostic Testing

    Esophagogastroduodenoscopy (EGD) and colonoscopy identify the source of bleeding in 80–90% of patients (4). The initial clinical presentation of GI bleeding is typically iron deficiency/microscopic anemia and microscopic detection of blood in stool tests (6).

     

    The following laboratory tests are advised to assist in finding the cause of GI bleeding (2):

    • Complete blood count
    • Hemoglobin/hematocrit
    • International normalized ratio (INR), prothrombin time (PT), and activated partial thromboplastin time (PTT)
    • Liver function tests

     

    Low hemoglobin and hematocrit levels result from blood loss, and blood urea nitrogen (BUN) may be elevated due to the GI system's breakdown of proteins within the blood (9).

     

    The following laboratory tests are advised to assist in finding the cause of GI bleeding:

    • EGD (esophagogastroduodenoscopy)- Upper GI endoscopy
      • Clinicians can visualize the upper GI tract using a camera probe that enters the oral cavity and travels to the duodenum (9)
    • Colonoscopy- Lower GI endoscopy/ (9)
      • Clinicians can visualize the lower GI tract.
    • CT angiography
      • Used to identify an actively bleeding vessel

    Signs and Symptoms 

    Clinical signs and symptoms depend on the volume/ rate of blood loss and the location/ source of the bleeding. A few key terms to be familiar with when evaluating GI blood loss are overt GI bleeding, occult GI bleeding, hematemesis, hematochezia, and melena. Overt GI bleeding means blood is visible, while occult GI bleeding is not visible to the naked eye but is diagnosed with a fecal occult blood test (FOBT) yielding positive results of the presence of blood (5). Hematemesis is emesis/ vomit with blood present; melena is a stool with a black/maroon-colored tar-like appearance that signifies blood from the upper GI tract (5). Melena has this appearance because when blood mixes with hydrochloric acid and stomach enzymes, it produces this dark, granular substance that looks like coffee grounds (9). 

     

    Mild vs. Severe Bleeding  

    A patient with mild blood loss may present with weakness and diaphoresis (9). Chronic iron deficiency anemia symptoms include hair loss, hand and feet paresthesia, restless leg syndrome, and impotence in men (8). The following symptoms may appear over time once anemia becomes more severe and hemoglobin is consistently less than 7 mg/dl: pallor, headache, dizziness from hypoxia, tinnitus from the increased circulatory response, and the increased cardiac output and dysfunction may lead to dyspnea (8). Findings of a positive occult GI bleed may be the initial red flag. 

    A patient with severe blood loss, which is defined as a loss greater than 1 L within 24 hours, hypotensive, diaphoretic, pale, and have a weak, thready pulse (9). Signs and symptoms will reflect the critical loss of circulating blood volume with systemic hypoperfusion and oxygen deprivation, so that cyanosis will also be evident (9). This is considered a medical emergency, and rapid intervention is needed. 

     

    Stool Appearance: Black, coffee ground = Upper GI; Bright red blood = Lower GI. 

    Quiz Questions

    Self Quiz

    Ask yourself...

    1. How would you prioritize the following patients: (1) Patient complains of weakness and coffee-like stool; or (2) Patient complains of constipation and bright red bleeding from the anus?
    2. Have you ever witnessed a patient in hypovolemic shock? If yes, what symptoms were most pronounced? If not, consider the signs.
    3. What are ways that the nurse can describe abnormal stool?

    History and Physical Assessment

    History

    A thorough and accurate history and physical assessment is a key part of identifying and managing GI bleed. Remember to avoid medical terminology/jargon while asking specific questions, as this can be extremely helpful in narrowing down potential cases. It is a good idea to start with broad categories (general bleeding) then narrow to specific conditions.

    Assess for the following:

    • Previous episodes of GI Bleed
    • Medical history with contributing factors for potential bleeding sources (e.g., ulcers, inflammatory bowel disease, liver disease, varices, PUD, alcohol abuse, tobacco abuse, H.pylori, diverticulitis) (3)
    • Contributory medications (non-steroidal anti-inflammatory drugs (NSAIDs, anticoagulants, antiplatelet agents, bismuth, iron) (3)
    • Comorbid diseases that could affect management of GI Bleed (8)

     

    Physical Assessment
    1. Head to toe and focused Gastrointestinal, Hepatobiliary, Cardiac and Pancreatic
    2. Assessments
      Assess stool for presence of blood (visible) and anticipate orders/ collect specimen for occult blood testing.
    3. Vital Signs

     

    Signs of hemodynamic instability associated with loss of blood volume (3):

    • Resting tachycardia
    • Orthostatic hypotension
    • Supine hypotension
    • Abdominal pain (may indicate perforation or ischemia)
    • A rectal exam is important for the evaluation of hemorrhoids, anal fissures, or anorectal mass (3)

     

    Certain conditions place patients at higher risk for GI bleed. For example, patients with end-stage renal disease (ESRD) have a five times higher risk of GIB and mortality than those without kidney disease (2).

    Quiz Questions

    Self Quiz

    Ask yourself...

    1. Are there specific questions to ask if GIB is suspected?
    2. What are phrases from the patient that would raise a red flag for GIB (For example: “I had a stomach bleed years ago”) 
    3. Have you ever noted overuse of certain medications in patients?
    Quiz Questions

    Self Quiz

    Ask yourself...

    1. Have you ever shadowed or worked in an endoscopy unit?
    2. Name some ways to explain the procedures to the patient?

    Treatment and Interventions

    Treatment and interventions for GIB bleed will depend on the severity of the bleeding. Apply the ABCs (airway, breathing, circulation) prioritization tool appropriately with each unique case. Treatment is guided by the underlying condition causing the GIB, so this data is too broad to cover. It would be best to familiarize yourself with tools and algorithms available within your organization that guide treatment for certain underlying conditions. Image 2 is an example of an algorithm used to treat UGIB (8). The Glasgow-Blatchford bleeding score (GBS) tool is another example of a valuable tool to guide interventions. Once UGIB is identified, the Glasgow-Blatchford bleeding score (GBS) can be applied to assess if the patient will need medical intervention such as blood transfusion, endoscopic intervention, or hospitalization (4).

    Unfortunately, there is currently a lack of tools available for risk stratification of emergency department patients with lower gastrointestinal bleeding (LGIB) (6). This gap represents an opportunity for nurses to develop and implement tools based on their experience with LGIB.

     

     

    (8) 

     

     

    Quiz Questions

    Self Quiz

    Ask yourself...

    1. Are you familiar with GIB assessment tools?
    2. How would you prioritize the following orders: (1) administer blood transfusion, (2) obtain occult stool for testing, and (3) give stool softener?

    The first step of nursing care is the assessment. The assessment should be ongoing and recurrent, as the patient's condition may change rapidly with GI bleed. During the evaluation, the nurse will gather subjective and objective data related to physical, psychosocial, and diagnostic data. Effective communication is essential to prevent and mitigate potential risk factors.

     

    Subjective Data (Client verbalizes)

    • Abdominal pain
    • Nausea
    • Loss of appetite
    • Dizziness
    • Weakness

     

    Objective Data (Clinician notes during assessment)

    • Hematemesis (vomiting blood)
    • Melena (black, tarry stools)
    • Hypotension
    • Tachycardia
    • Pallor
    • Cool, clammy skin

     

     

     

     

    Nursing Interventions

     

    Ineffective Tissue Perfusion:

    1. Monitor vital signs frequently to assess blood pressure, heart rate, and oxygen saturation changes.
    2. Obtain IV access.
    3. Administer oxygen as ordered.
    4. Elevate the head of the bed (support venous return and enhance tissue perfusion).
    5. Administer blood products (packed red blood cells, fresh frozen plasma) as ordered to replace lost blood volume.

     

    Acute Pain:

    1. Assess the patient's pain (quantifiable pain scale)
    2. Administer pain medications as ordered.
    3. Obtain and implement NPO Orders: Allow the GI tract to rest and prevent further irritation while preparing for possible endoscopic procedures.
    4. Apply heat/cold therapy for comfort.

     

    Risk for Decreased Cardiac Output

    1. Assess the patient's heart rate and rhythm. (Bleeding and low cardiac output may trigger compensatory tachycardia.) (9)
    2. Assess and monitor the patient's complete blood count.
    3. Assess the patient's BUN level.
    4. Monitor the patient's urine output.
    5. Perform hemodynamic monitoring.
    6. Administer supplemental oxygenation as needed.
    7. Administer intravenous fluids as ordered.
    8. Prepare and initiate blood transfusions as ordered.
    9. Educate and prepare the patient for endoscopic procedures and surgical intervention as needed.

     

    Risk for Deficient Fluid Volume:

    1. Monitor intake and output.
    2. Maintain hydration.
    3. Administer intravenous fluids as ordered.
    4. Monitor labs, including hemoglobin and hematocrit, to assess the effectiveness of fluid replacement therapy.
    5. Educate the patient on increasing oral fluid intake once the bleeding is controlled.
    6. Vital signs
    7. Assess the patient's level of consciousness and capillary refill time to evaluate tissue perfusion and response to fluid replacement.
    8. Collaborate with the healthcare team to adjust fluid replacement therapy based on the patient's response and laboratory findings.

     

    Nursing Goals / Outcomes for GI Bleed:

    • The patient's vital signs and lab values will stabilize within normal limits.
    • The patient will be able to demonstrate efficient fluid volume as evidenced by stable hemoglobin and hematocrit, regular vital signs, balanced intake and output, and capillary refill < 3 seconds.
    • The patient will exhibit increased oral intake and adequate nutrition.
    • The patient will verbalize relief or control of pain.
    • The patient will appear relaxed and able to sleep or rest appropriately.
    • The patient verbalizes understanding of patient education on gastrointestinal bleeding, actively engages in self-care strategies, and seeks appropriate support when needed.
    Quiz Questions

    Self Quiz

    Ask yourself...

    1. How can the nurse advocate for a patient with GIB?
    2. Can you think of ways your nursing interventions would differ between upper and lower GIB?
    3. Have you ever administered blood products?
    4. What are possible referrals following discharge that would be needed? (Example: gastroenterology, home health care)

    Case Study

    Mr. Blackstool presents to the emergency department with the following:

    CHIEF COMPLAINT: "My stool looked like a ball of black tar this morning."

    He also reports feeling "extra tired" and "lightheaded" for 3-5 days.

    HISTORY OF PRESENT ILLNESS: The patient is a 65-year-old tractor salesman who presents to the emergency room complaining of the passage of black stools, fatigue, and lightheadedness. He reports worsening chronic epigastric pain and reflux, intermittent for 10+ years.

    He takes NSAIDS as needed for back, and joint pain and was recently started on a daily baby aspirin by his PCP for cardiac prophylaxis. He reports "occasional" alcohol intake and smokes two packs of cigarettes daily.

    PHYSICAL EXAMINATION: Examination reveals an alert and oriented 65-YO male. He appears anxious and irritated. Vital sips are as follows. Blood Pressure 130/80 mmHg, Heart Rate 120/min - HR Thready - Respiratory Rate - 20 /minute; Temperature 98.0 ENT/SKIN: Facial pallor and cool, moist skin are noted. No telangiectasia of the lips or oral cavity is noted. The parotid glands appear full.

    CHEST: Lungs are clear to auscultation and percussion. The cardiac exam reveals a regular rhythm with an S4. No murmur is appreciated. Peripheral pulses are present but are rapid and weak.

    ABDOMEN/RECTUM: The waist shows a rounded belly. Bowel sounds are hyperactive. Percussion of the liver is 13 cm (mal); the edge feels firm. Rectal examination revealed a black, tarry stool. No Dupuytren's contractions were noted.

    LABORATORY TESTS: Hemoglobin 9gm/dL, Hematocrit 27%, WBC 13,000/mm. PT/PTT - normal. BUN 46mg/dL.

     

    Discuss abnormal findings noted during History and Physical Examination; Evaluate additional data to obtain possible diagnostic testing, treatment, nursing interventions, and care plans.

    Conclusion

    After this course, I hope you feel more knowledgeable and empowered in caring for patients with Gastrointestinal bleeding (GIB). As discussed, GIB is a potentially life-threatening condition that manifests as an underlying disorder. Think of gastrointestinal bleeding as a loud alarm signaling a possible medical emergency. Nurses can significantly impact the recognition of signs and symptoms that determine the severity of bleeding and underlying disease process while also implementing life-saving interventions as a part of the healthcare team. As evidence-based practice rapidly evolves, continue to learn, and grow your knowledge of GIB. 

     

    Constipation Management and Treatment

    Introduction   

    In the realm of healthcare, where every aspect of patient well-being is meticulously tended to, constipation is a condition that often remains in the shadows. Often dismissed as a minor inconvenience, constipation is a prevalent concern that can have significant repercussions on the health and comfort of hospitalized and long-term care patients (8).  

    Imagine a scenario where a middle-aged patient, recently admitted to a hospital for a non-related condition, is experiencing discomfort due to constipation. Despite the patient's hesitation to bring up this seemingly "embarrassing" topic, a skilled nurse takes the initiative to initiate an open conversation.  

    By actively listening and empathetically addressing the patient's concerns, the nurse alleviates the discomfort and also plays a crucial role in preventing potential complications. This scenario exemplifies the pivotal role that nurses play in the comprehensive management of constipation. 

    Envision a long-term care facility where an elderly resident's mobility is limited, leading to a sedentary lifestyle. As a result, this individual becomes more susceptible to constipation, which could potentially lead to more severe issues if left unattended. Here, the nurse's expertise in identifying risk factors and tailoring interventions comes into play.  

    By suggesting gentle exercises, dietary adjustments, and adequate hydration, the nurse transforms the resident's daily routine, ensuring a healthier digestive tract and enhanced overall well-being. 

    Through the above scenarios, it becomes evident that constipation is not merely a minor inconvenience but a legitimate concern that warrants attention. As the first line of defense in patient care, nurses are uniquely positioned to identify, address, and holistically prevent constipation.  

    Nurses possess the knowledge and skills to create a profound impact on patient lives by acknowledging and addressing this issue. This course aims to equip nurses with an in-depth understanding of constipation, enabling them to be proactive vigilant advocates for patient comfort, bowel health, and overall well-being. 

    Quiz Questions

    Self Quiz

    Ask yourself...

    1. What role do nurses play in constipation management? 
    2. Name one lifestyle factor that can contribute to constipation. 

    Epidemiology  

    To truly comprehend the significance of constipation in healthcare settings, it's essential to grasp its prevalence and impact. Statistics reveal that constipation holds a prominent spot in healthcare challenges, with up to 30% of patients in hospitals and long-term care facilities experiencing this discomfort (4). This means that in a unit with 100 patients, nearly a third of them might be grappling with constipation-related issues.  

    Even though constipation transcends demographics, elderly patients, who are a substantial part of long-term care settings, are more susceptible to constipation due to factors like decreased mobility, altered dietary habits, and medication use. Understanding this demographic predisposition is crucial for nurses as it guides their vigilance in recognizing and managing constipation among this vulnerable group. By unraveling its prevalence and its penchant for affecting diverse patient groups, nurses can step into their roles armed with knowledge, ready to make a tangible difference in patient lives. 

    Quiz Questions

    Self Quiz

    Ask yourself...

    1. What percentage of patients in hospitals and long-term care facilities experience constipation?  

    Etiology/Pathophysiology  

    Embarking on the journey to comprehend constipation's root causes and underlying mechanisms offers a fascinating glimpse into the intricate workings of the digestive system. The digestive system is a well-orchestrated symphony where even a slight disruption can lead to a discordant note, constipation being one such note.  

    Constipation arises from an intricate interplay of factors. Lifestyle choices, such as physical inactivity, dietary habits, and even medication use, can disturb the symphony of digestion. These disruptions impact the stool's consistency, its journey through the intestines, and the efficiency of water absorption.  

     

    Some examples of how lifestyle choices can cause constipation include the following: 

    • The digestive tract, like a finely tuned instrument, requires regular movement to maintain its rhythm and balance. Without physical activity to nudge food along, its journey through the digestive process slows down, potentially leading to constipation. 
    • Mismanagement of water absorption in the colon can also contribute to constipation. Excess absorption of water in the colon can turn the stool hard and dry, making it a formidable challenge to pass.  
    • When fiber is lacking in the diet, stool encounters resistance and sluggishness, akin to a symphony losing its guiding rhythm. This lack of fiber can lead to constipation, underscoring the importance of dietary choices in maintaining a harmonious digestive process (10). 

     

    Understanding the above dynamics empowers nurses to decode the origins of constipation and tailor interventions that restore the harmonious rhythm of the digestive orchestra. Just as a conductor guides a symphony to its crescendo, nurses can orchestrate the path to relief and comfort for patients grappling with constipation. 

    Signs and Symptoms  

    Constipation's signs and symptoms are the stars that guide nurses toward effective management. Infrequent bowel movements, excessive straining, abdominal discomfort, and bloating are like constellations, revealing the narrative of digestive imbalance. 

    Recognizing the constellation of signs and symptoms becomes the compass guiding nurses toward effective care. Just as a seasoned sailor navigates by the stars, nurses navigate constipation's landscape by deciphering the cues that patients present. 

    Research by Anderson and Brown (1) reveals that patients grappling with constipation often experience infrequent bowel movements as a telltale sign. Nurses, armed with this insight, recognize that infrequent bowel movements warrant vigilant assessment and timely interventions. 

    Excessive straining, much like tugging at sails in adverse winds, emerges as another hallmark of constipation (6). Patients' tales of discomfort during bowel movements point to an underlying imbalance. Nurses adeptly interpret this discomfort as a call for action, initiating strategies that ease the passage of stool and restore harmony to the digestive symphony. 

    Discomfort serves as an indicator of the digestive system's struggle to find its equilibrium. Nurses, like skilled navigators, probe further, discerning the nuances of the discomfort to tailor interventions that address its root cause (11). 

    Bloating is another symptom. Research by Smith and Williams (9) illuminates the link between constipation and bloating. This connection heightens nurses' vigilance, prompting them to delve into patients' experiences and offer relief from the discomfort. 

    Pharmacological/Non-Pharmacological Treatment 

    Constipation management encompasses a harmonious blend of pharmacological and non-pharmacological strategies. Just as a symphony thrives on a balanced ensemble, nurses can orchestrate a symphony of relief and comfort by selecting the right interventions for each patient's unique needs. Through this holistic approach, nurses play a pivotal role in restoring the digestive symphony to its harmonious rhythm. 

     
    Pharmacological 

    As nurses step into the realm of constipation management, they encounter a diverse array of strategies that can harmonize the digestive symphony. Picture a pharmacist's shelf adorned with an assortment of medications, each with a specific role in alleviating constipation. 

    Fiber supplements work by increasing stool bulk and promoting regular bowel movements. They're gentle and mimic the natural process, ensuring a harmonious flow. 

    Osmotic laxatives introduce more water into the stool, creating a balanced blend of moisture, preventing dry and challenging stools, and facilitating movement.  

    Stimulant laxatives stimulate bowel contractions, hastening the stool's journey through the digestive tract. They're like the energetic beats that invigorate a symphony, leading to a rhythmic and effective passage. 

    Lastly, stool softeners ensure that the stool is neither too hard nor too soft, striking the perfect balance. They act by moistening the stool, making it easier to pass without straining. By introducing this harmony, stool softeners contribute to patient comfort. 

     
    Non-pharmacological 

    Beyond the realm of medications lies an equally vital avenue: non-pharmacological interventions. Nurses can craft a holistic care plan, carefully considering dietary adjustments and lifestyle modifications as the foundation. Examples of non-pharmacological interventions include the following: 

    A diet rich in fiber guides the stool's journey with ease. Nurses can educate patients on incorporating fruits, vegetables, and whole grains, ensuring a harmonious flow through the intestines. 

    Engaging in regular physical activity not only stimulates bowel movements but also enhances overall well-being. Nurses can encourage patients to integrate movement into their routines, contributing to a dynamic and efficient digestive process. 

    Relaxation techniques play a vital role in constipation management. Nurses can provide guidance on techniques like deep breathing or gentle abdominal massages that soothe the digestive tract, facilitate a smoother passage, and transform discomfort into relaxation. 

    Quiz Questions

    Self Quiz

    Ask yourself...

    1. How does fiber-rich food aid in preventing constipation? 
    2. What are the four main types of pharmacological treatment for constipation? 

    Complications 

    Constipation complications can disrupt the symphony of health. Nurses, armed with knowledge and interventions, become conductors of comfort, guiding patients toward a harmonious journey free from discomfort and dissonance. Through their skilled care, nurses harmonize the symphony of patient well-being, preventing complications and promoting relief. Examples of complications include the following. 

     

    Hemorrhoids 

    These are swollen blood vessels around the rectal area that cause pain, itching, and even bleeding during bowel movements. Nurses can educate patients about preventive measures, such as adequate fiber intake, staying hydrated, and avoiding straining during bowel movements. 

     

    Anal Fissure 

    This is a small tear in the anal lining that can cause pain and bleeding, disrupting daily life. Nurses can gently guide patients toward hygiene practices and proper self-care, restoring comfort and preventing further disruption. 

     

    Fecal Impaction 

    Here, the stool accumulates, creating an obstruction that can be likened to an unexpected pause in flow. This impaction causes severe discomfort and can even lead to bowel obstruction. Nurses should be attentive to patients at risk of fecal impaction, promptly intervening with measures such as stool softeners, gentle digital disimpaction, and regular bowel assessments.  

     

    Rectal Prolapse 

    This protrusion of the rectal lining is a disruptive problem that not only causes physical discomfort but also emotional distress. Nurses can empower patients by educating them about the importance of managing constipation and preventing rectal prolapse.  

     

    Nausea and Vomiting 

    The buildup of waste and toxins can trigger these unsettling symptoms. Nurses should be vigilant, recognizing these cues as a sign of digestive imbalance. Collaborating with healthcare teams, nurses can address the underlying constipation, restoring harmony and alleviating discomfort. 

     

    Bowel Obstruction 

    This is a medical emergency. Patients experience severe abdominal pain, bloating, and the inability to pass stool or gas. Nurses should be well-equipped to recognize these symptoms and act swiftly, seeking immediate medical intervention.  

    Quiz Questions

    Self Quiz

    Ask yourself...

    1. What is a potential complication of untreated constipation that involves swollen blood vessels around the rectal area? 
    2. What are two potential symptoms of constipation-related nausea and vomiting? 
    3. When should nurses suspect a bowel obstruction in a patient with constipation? 

    Prevention  

    Prevention is composed of dietary choices, hydration, exercise, and lifestyle awareness. Nurses, as conductors of preventive care, guide patients toward a harmonious journey of well-being. By embracing preventive measures, patients become active participants in the symphony of their health, ensuring that the digestive rhythm remains soothing and uninterrupted. Sample preventive measures include the following: 

     

    Dietary Adjustments 

    Nurses can educate patients about the importance of incorporating fiber into their diets. Picture a patient's plate adorned with vibrant fruits, vegetables, and whole grains — these fiber-rich choices act as the brushstrokes that create a smooth flow through the digestive system.  

     

    Hydration 

    Like the gentle spray that keeps a garden vibrant, staying adequately hydrated ensures the digestive landscape remains fluid and inviting. Nurses can encourage patients to drink sufficient water, allowing the stool's journey to be as effortless as the water's flow.  

     
    Exercise 

    Nurses can guide patients in incorporating regular physical activities like brisk walks, or gentle stretching into their daily routines, creating a rhythm that enhances bowel motility and overall well-being. Movements, much like instrument tuning before a performance, prepare the digestive system for optimal function.  

     

    Lifestyle Awareness 

    Nurses can educate patients about the importance of timely bowel movements and creating a comfortable environment for digestion. Patients can cultivate their well-being by avoiding prolonged periods of sitting and adopting healthy toileting habits.  

     

    Patient Education 

    Nurses can provide insights into the importance of fiber-rich foods, hydration, and movement. By empowering patients with knowledge, nurses equip them with the tools needed to prevent constipation and maintain digestive well-being.   

    Quiz Questions

    Self Quiz

    Ask yourself...

    1. What is the importance of dietary adjustments in preventing constipation? 
    2. How does hydration impact constipation prevention? 
    3. What is the role of exercise in preventing constipation? 

    Nursing Implications 

    Nurses are instrumental in managing constipation and improving patient outcomes. Nurses should be skilled in assessing patients for constipation risk factors, communicating effectively about symptoms, and tailoring interventions to individual patient needs. Collaborating with other healthcare professionals to develop comprehensive care plans is essential. Examples of useful nursing skills include: 

     

    Holistic Assessment 

    Nurses are vigilant observers, attuned to the nuances of patient well-being. Like skilled detectives, nurses delve into patients' histories, medications, and lifestyles, identifying constipation risk factors. Holistic assessments allow nurses to understand the unique backdrop against which constipation may unfold. Armed with this knowledge, nurses can tailor interventions that resonate with each patient's needs (12). 

     
    Effective Communication 

    Envision a nurse as a skilled communicator, bridging the gap between patient concerns and medical insights. Like a translator, nurses help patients express their symptoms and experiences, ensuring nothing gets lost in translation. Effective communication not only nurtures trust but also facilitates accurate assessment, enabling nurses to identify constipation-related cues and initiate timely interventions (14). 

     

    Collaboration with Multidisciplinary Teams 

    Consider a care setting where the patient's well-being is a collective effort, much like an orchestra composed of diverse instruments. Nurses collaborate with physicians, dietitians, physical therapists, and other healthcare professionals to ensure a harmonious approach to constipation management. This interdisciplinary collaboration ensures that each note of patient care resonates in unison, creating a symphony of comprehensive well-being (7). 

     

    Patient-Centered Care Plans 

    Imagine nurses as architects of care plans, designing blueprints that reflect patients' unique needs and preferences. Just as architects tailor a building to its occupants, nurses craft patient-centered care plans that incorporate dietary preferences, lifestyle routines, and individualized interventions. This tailored approach ensures that patients feel heard and empowered in their constipation management journey (13). 

     

    Education and Empowerment 

    Envision nurses as educators, empowering patients with knowledge that transforms them into active participants in their care. Much like a guide, nurses navigate patients through the maze of constipation management strategies, ensuring clarity and understanding. By imparting information about dietary choices, hydration, exercise, and self-care, nurses equip patients with the tools needed to harmonize their digestive well-being (2). 

     
    Continuous Monitoring and Evaluation 

    Imagine nurses as diligent conductors, continuously assessing the rhythm of constipation management. Just as a conductor listens to every note, nurses monitor patients' responses to interventions, ensuring their effectiveness. Regular evaluation allows nurses to fine-tune strategies, ensuring that the symphony of constipation management remains harmonious and effective (5). 

     

    Compassionate Support 

    Envision nurses as compassionate companions on the patient's constipation management journey. Like trusted friends, nurses offer emotional support, addressing patients' concerns and fears with empathy. This compassionate approach fosters a sense of security and trust, enabling patients to navigate the challenges of constipation with resilience and a sense of camaraderie (3). 

     

    Quiz Questions

    Self Quiz

    Ask yourself...

    1. How can nurses contribute to patient-centered care plans for constipation management? 
    2. What is the significance of effective communication in constipation management? 
    3. Why is continuous monitoring and evaluation important in constipation management? 

    Conclusion

    Constipation is a significant concern that impacts the comfort and well-being of hospitalized and long-term care patients. Nurses' proactive role in identifying, managing, and preventing constipation is essential for promoting patient health. By employing a combination of pharmacological and non-pharmacological interventions, nurses can significantly enhance patient comfort and quality of life.  

    Envision nurses as educators who share the symphony of knowledge with patients, empowering them to become proactive partners in their well-being. With insights about dietary choices, hydration, exercise, and relaxation techniques, patients become active participants in the harmony of their digestive health. 

    Think of nurses as vigilant observers, continuously assessing the rhythm of constipation management, listening to every note, monitoring patient responses, and adjusting interventions to ensure a harmonious and effective approach.  

    Finally, visualize nurses as compassionate companions on the constipation management journey. They offer unwavering support, much like friends sharing the weight of challenges. This compassionate presence fosters trust, comfort, and a sense of unity, creating a symphony of emotional well-being alongside physical relief. 

    As this course concludes, let us remember that constipation management is not just about alleviating discomfort but about orchestrating a symphony of care that encompasses every aspect of the patient’s experience.  

    By blending knowledge, empathy, and skill, nurses elevate constipation management from a routine task to a transformative experience. With this newfound understanding, nurses are prepared to guide patients toward a harmonious symphony of relief, comfort, and overall well-being. 

     

     

    References + Disclaimer

    1. Nurses are Still Stressed, Frustrated, and Overwhelmed Almost 2 Years into COVID-19. (2021, October 26). ANA. https://www.nursingworld.org/news/news-releases/2021/new-survey-data-thousands-of-nurses-are-still-stressed-frustrated-and-overwhelmed-almost-2-years-into-the-pandemic/  
    2. General, O. O. T. S. (2022, May 23). New Surgeon General Advisory sounds alarm on health worker burnout and resignation. HHS.gov. https://www.hhs.gov/about/news/2022/05/23/new-surgeon-general-advisory-sounds-alarm-on-health-worker-burnout-and-resignation.html  
    3. Harvey, B. (2022) 98 Best self-care quotes to remind you what matters. Retrieved from https://www.goodgoodgood.co/articles/self-care-quotes 
    4. Writers, S. (2023, March 23). What is nurse burnout? | nursejournal.org. NurseJournal. https://nursejournal.org/resources/nurse-burnout/  
    5. Wolotira, E. A. (2023). Trauma, compassion fatigue, and burnout in nurses. Nurse Leader, 21(2), 202–206. https://doi.org/10.1016/j.mnl.2022.04.009  
    6. Vaughn, N. (2023). Nursing Compassion Fatigue and Burnout vs. Moral Injury. Nurse.com Blog. https://www.nurse.com/blog/nursing-compassion-fatigue-and-burnout-vs-moral-injury/  
    7. Shah, M., Gandrakota, N., Cimiotti, J. P., Ghose, N., Moore, M., & Ali, M. K. (2021). Prevalence of and factors associated with nurse burnout in the US. JAMA Network Open, 4(2), e2036469. https://doi.org/10.1001/jamanetworkopen.2020.36469  
    8. National Academies Press (US). (2019, October 23). Introduction. Taking Action Against Clinician Burnout – NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK552613/#:~:text=Extensive%20research%20has%20found%20that,and%2060%20percent%20for%20medical  
    9. Nurse burnout: What is it & how to prevent it | ANA. (2023, February 17). ANA. https://www.nursingworld.org/practice-policy/work-environment/health-safety/nurse-burnout-and-how-to-prevent-it/  
    10. Burnout. (2022, September 27). PSNet. https://psnet.ahrq.gov/primer/burnout#:~:text=The%20emotional%20exhaustion%20and%20depersonalization,compromises%20the%20quality%20of%20care 
    11. Shift. (2021, June 22). On the Verge of Burnout? Three Proactive Steps You Can Take Today – SHIFT. SHIFT. https://www.shiftnursing.com/articles/on-the-verge-of-burnout-three-proactive-steps-you-can-take-today  
    12. Caring for your mental health. (n.d.). National Institute of Mental Health (NIMH). https://www.nimh.nih.gov/health/topics/caring-for-your-mental-health 
    13. Tribe-Scott, BSN, RN, RAC-MT, RAC-MTA, QCP, M. (2022). Burnout: How can nurse leadership help? AAPACN. https://www.aapacn.org/blog/burnout-how-can-nurse-leadership-help 

     

    1. Ash, J. S., Sittig, D. F., Dykstra, R., Campbell, E., & Guappone, K. (2019). The unintended consequences of computerized provider order entry: Findings from a mixed methods exploration. International Journal of Medical Informatics, 125, 385-394. 
    2. Bates, D. W., Singh, H., & Phillips, R. S. (2015). Medication errors: How common are they and what can be done to prevent them? Journal of General Internal Medicine, 30(6), 731-732. 
    3. Eppich, W. J., CichoskiKelly, E., & Zonfrillo, M. R. (2019). Making high stakes out of team training: A pediatric simulation competition to improve team behaviors. Simulation in Healthcare, 14(2), 91-100. 
    4. Graber, M. L., Wachter, R. M., & Cassel, C. K. (2018). Bringing diagnosis into the quality and safety equations. JAMA, 320(18), 1859-1860. 
    5. Institute for Healthcare Improvement. (2020). Patient safety primer: Institute for Healthcare Improvement. Retrieved from http://www.ihi.org/education/Topics/Patient-Safety/Pages/default.aspx 
    6. Joint Commission. (2021). Universal Protocol for preventing wrong site, wrong procedure, and wrong person surgery. Retrieved from https://www.jointcommission.org/-/media/tjc/documents/standards/rfi/universal-protocol-rfi-2020-finalpdf.pdf 
    7. Koppel, R., Coles, C., & Fost, N. (2018). Two methods to prevent patient misidentification. Journal of the American Medical Association, 319(11), 1151-1152. 
    8. Leape, L. L., Berwick, D. M., & Bates, D. W. (2019). What practices will most improve safety? Evidence-based medicine meets patient safety. JAMA, 321(8), 747-748.
    9. Makary, M. A., & Daniel, M. (2016). Medical error—the third leading cause of death in the US. BMJ, 353, i2139. 
    10. Mehtsun, W. T., Ibrahim, A. M., Diener-West, M., Pronovost, P. J., & Makary, M. A. (2013). Surgical never events in the United States. Surgery, 153(4), 465-472. 
    11. Mueller, S. K., Sponsler, K. C., Kripalani, S., Schnipper, J. L. (2018). Hospital-based medication reconciliation practices: A systematic review. Archives of Internal Medicine, 172(14), 1057-1069.
    12. Pucher, P. H., Johnston, M. J., Aggarwal, R., Arora, S., Darzi, A., & Vincent, C. A. (2020). Effectiveness of interventions to improve patient handover in surgery: A systematic review. Surgery, 155(1), 21-30. 
    13. Shreve, J., Van Den Bos, J., Gray, T., & Halford, M. (2019). The Economic Measurement of Medical Errors. Health Affairs, 38(4), 654-661.
    14. Society for Healthcare Epidemiology of America (SHEA). (2020). Antimicrobial stewardship and the importance of diagnostics. Retrieved from https://www.shea-online.org/index.php/practice-resources/priority-topics/antimicrobial-stewardship/169-antimicrobial-stewardship-and-the-importance-of-diagnostics 
    15. Sorra, J., Khanna, K., Dyer, N., Mardon, R., Famolaro, T., Hospital Survey on Patient Safety Culture: 2018 User Database Report, AHRQ Publication No. 18-0033, Rockville, MD: Agency for Healthcare Research and Quality. October 2018.
    16. Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44-56.
    17. Weaver, S. J., Che, X., & Petersen, L. A. (2020). Organizational culture and leadership, clinician burnout and satisfaction, and patient safety in rural hospitals. Health Care Management Review, 45(3), 235-244.
    18. Weber, D. J., Rutala, W. A., & Miller, M. B. (2013). Role of hospital surfaces in the transmission of emerging health care–associated pathogens: Norovirus, Clostridium difficile, and Acinetobacter species. American Journal of Infection Control, 41(5 Suppl), S12-S19.

     

    1. Centers for Disease Control and Prevention (2023). What is health Literacy? Retrieved on September 15, 2023 from https://www.cdc.gov/healthliteracy/learn/index.html
    2. MedlinePlus [Internet] National Library of Medicine. Choosing effective patient education materials; Reviewed 2021 October 17] Retrieved on September 15, 2023, from https://medlineplus.gov/ency/patientinstructions/000455.htm
    3. Goodman, C., Lambert., (2022). Scoping review of the preferences of older adults for patient education materials. Patient Education and Counseling, Volume 108, March 2023, 107591. Retrieved on September 15, 2023, from https://doi.org/10.1016/j.pec.2022.107591 
    4. Zajacova, A., & Lawrence, , (2018). The relationship between education and health: reducing disparities through a contextual approach. Annual Review of Public Health. 2018 April 1; Vol 39: pp 273-289. Retrieved on September 15, 2023 from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5880718/
    5. Betancourt, , Green, A., & Carrillo, E., (2021). The patient’s culture and effective communication. UpToDate. Retrieved on September 14th, 2023 from https://www.uptodate.com/contents/the-patients-culture-and-effective-communication/print
    6. Centers for Disease Control and Prevention (2021). Importance of Health Literacy. Retrieved on September 13, 2023 ,from https://www.cdc.gov/healthliteracy/developmaterials/audiences/olderadults/importance.html#:~:text=The%20National%20Assessment%20of%20Adult,interpreting%20numbers%20and%20doing%20calculations
    7. S. Department of Health and Human Services. (2019). Health Literacy Reports and Publications. Retrieved on September 15, 2023 from https://www.hhs.gov/surgeongeneral/reports-and-publications/health-literacy/index.html#:~:text=Health%20literacy%20is%20key%20to,have%20proficient%20health%20literacy%20skills
    8. Health Care Education Association. (2021). Patient Education Guidelines for Health Care Professionals. Retrieved on September 14, 2023, from https://www.hcea-info.org/assets/hcea%20guidelines%20color%201-25-2021.pdf
    9. Chick, N (2010). Learning Styles. Vanderbilt University Center for Teaching. Retrieved September 15, 2023, from https://cft.vanderbilt.edu/guides-sub-pages/learning-styles-preferences/
    10. Merriam-Webster. (d). Education. In Merriam-Webster.com dictionary. Retrieved September 15, 2023, from https://www.merriam-webster.com/dictionary/education
    11. Use the Teach-back Method: Tool #5. Content last reviewed September 2020. Agency for Healthcare Research and Quality, Rockville, MD. Retrieved on September 15, 2023, from https://www.ahrq.gov/health-literacy/improve/precautions/tool5.html
    12. Medline Plus. [Internet]. National Library of Medicine. (2021). Communicating with patients. Retrieved on September 17, 2023 from https://medlineplus.gov/ency/patientinstructions/000456.htm
    13. Marcum, J., Ridenour, M., Shaff, G., Hammons, M., & Taylor,M. (2021). A Study of Professional Nurses’ Perceptions of Patient Education. The Journal of Continuing Education in 2013;33(3): pp 112-118. Retrieved on September 18, 2023 from https://doi.org/10.3928/0022-0124-20020501-05

     

     

    1. Nurses are Still Stressed, Frustrated, and Overwhelmed Almost 2 Years into COVID-19. (2021, October 26). ANA. https://www.nursingworld.org/news/news-releases/2021/new-survey-data-thousands-of-nurses-are-still-stressed-frustrated-and-overwhelmed-almost-2-years-into-the-pandemic/
    2. General, O. O. T. S. (2022, May 23). New Surgeon General Advisory sounds alarm on health worker burnout and resignation. gov. https://www.hhs.gov/about/news/2022/05/23/new-surgeon-general-advisory-sounds-alarm-on-health-worker-burnout-and-resignation.html
    3. Harvey, B. (2022) 98 Best self-care quotes to remind you what matters. Retrieved from https://www.goodgoodgood.co/articles/self-care-quotes
    4. Writers, S. (2023, March 23). What is nurse burnout? | nursejournal.org. NurseJournal. https://nursejournal.org/resources/nurse-burnout/
    5. Wolotira, E. A. (2023). Trauma, compassion fatigue, and burnout in nurses. Nurse Leader, 21(2), 202–206. https://doi.org/10.1016/j.mnl.2022.04.009
    6. Vaughn, N. (2023). Nursing Compassion Fatigue and Burnout vs. Moral Injury. com Blog. https://www.nurse.com/blog/nursing-compassion-fatigue-and-burnout-vs-moral-injury/
    7. Shah, M., Gandrakota, N., Cimiotti, J. P., Ghose, N., Moore, M., & Ali, M. K. (2021). Prevalence of and factors associated with nurse burnout in the US. JAMA Network Open, 4(2), e2036469. https://doi.org/10.1001/jamanetworkopen.2020.36469
    8. National Academies Press (US). (2019, October 23). Introduction. Taking Action Against Clinician Burnout – NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK552613/#:~:text=Extensive%20research%20has%20found%20that,and%2060%20percent%20for%20medical
    9. Nurse burnout: What is it & how to prevent it | ANA. (2023, February 17). ANA. https://www.nursingworld.org/practice-policy/work-environment/health-safety/nurse-burnout-and-how-to-prevent-it/
    10. Burnout. (2022, September 27). PSNet. https://psnet.ahrq.gov/primer/burnout#:~:text=The%20emotional%20exhaustion%20and%20depersonalization,compromises%20the%20quality%20of%20care
    11. (2021, June 22). On the Verge of Burnout? Three Proactive Steps You Can Take Today – SHIFT. SHIFT. https://www.shiftnursing.com/articles/on-the-verge-of-burnout-three-proactive-steps-you-can-take-today
    12. Caring for your mental health. (n.d.). National Institute of Mental Health (NIMH). https://www.nimh.nih.gov/health/topics/caring-for-your-mental-health
    13. Tribe-Scott, BSN, RN, RAC-MT, RAC-MTA, QCP, M. (2022). Burnout: How can nurse leadership help? AAPACN. https://www.aapacn.org/blog/burnout-how-can-nurse-leadership-help

     

    1. Anusiewicz, C. V., Ivankova, N. V., Swiger, P. A., Gillespie, G. L., Li, P., & Patrician, P. A. (2020). How does workplace bullying influence nurses’ abilities to provide patient care? a nurse perspective. Journal of Clinical Nursing, 29(21-22), 4148–4160. https://doi.org/10.1111/jocn.15443
    2. Collins, B. (2022). Mobbing and workplace bullying among registered nurses in Mississippi. ABNFF Journal, 1(2), 20–28.
    3. Edmonson, C., & Zelonka, C. (2019). Our own worst enemies. Nursing Administration Quarterly, 43(3), 274–279. https://doi.org/10.1097/naq.0000000000000353
    4. Harassment definition & meaning. (n.d.). Dictionary.com. https://www.dictionary.com/browse/harassment
    5. Meires, J. (2018). Workplace incivility – the essentials: Here’s what you need to know about bullying in nursing. Urologic Nursing, 38(2), 95. https://doi.org/10.7257/1053-816x.2018.38.2.95
    6. Thompson, R. (Feb 2022). Getting Clear on Bullying Versus Incivility. Florida Nurse, 70(1), 19–19.

     

    1. Agency for Healthcare Research and Quality (AHRQ). (2021). Benchmarking for Quality Improvement. https://digital.ahrq.gov/health-it-tools-and-resources/evaluation-resources/workflow-assessment-health-it-toolkit/all-workflow-tools/benchmarking
    2. Agency for Healthcare Research and Quality (AHRQ). (2021). Data Collection and Management. https://www.ahrq.gov/talkingquality/measures/data-collection.html
    3. Agency for Healthcare Research and Quality (AHRQ). (2021). Nursing-sensitive indicators: AHRQ quality indicators. https://www.qualityindicators.ahrq.gov/Modules/nursing-sensitive_indicators.aspx
    4. Agency for Healthcare Research and Quality (AHRQ). (2019). TeamSTEPPS 2.0: Strategies and Tools to Enhance Performance and Patient Safety. https://www.ahrq.gov/teamstepps/index.html
    5. Agency for Healthcare Research and Quality (AHRQ). (2021). Types of Measures. https://www.ahrq.gov/talkingquality/measures/types.html
    6. Centers for Medicare & Medicaid Services (CMS). (2021). Quality Improvement and Evaluation System (QIES). https://www.cms.gov/medicare/health-safety-standards/quality-safety-oversight-general-information/iqies
    7. Deming, W. E. (1986). Out of the Crisis. MIT Press.
    8. Dowding, D., Randell, R., Gardner, P., Fitzpatrick, G., Dykes, P., & Favela, J. (2019). Dashboards for improving patient care: Review of the literature. International Journal of Medical Informatics, 124, 87-97. https://doi.org/10.1016/j.ijmedinf.2019.01.008
    9. Feldstein, A. C., Glasgow, R. E., Smith, D. H., & Aickin, M. (2019). Six-Sigma: A case study in a community health center. The Joint Commission Journal on Quality and Patient Safety, 45(2), 96-104. doi:10.1016/j.jcjq.2018.05.002
    10. George, M. L. (2020). Lean Six Sigma for Service: How to Use Lean Speed and Six Sigma Quality to Improve Services and Transactions (2nd ed.). McGraw-Hill Education.
    11. George, M. L., Rowlands, D., & Price, M. (2015). The Lean Six Sigma Pocket Tool book: A Quick Reference Guide to 100 Tools for Improving Quality and Speed. McGraw-Hill Education.
    12. Institute for Healthcare Improvement (IHI). (2020). Introduction to Quality Improvement. https://www.ihi.org/education/IHIOpenSchool/Courses/Pages/QualityImprovement.aspx
    13. Institute for Healthcare Improvement. (2019). What is Quality Improvement? https://www.ihi.org/education/IHIOpenSchool/Courses/Pages/QualityImprovement.aspx
    14. Institute of Medicine (IOM). (2001). Crossing the Quality Chasm: A New Health System for the 21st Century. National Academies Press.
    15. Johnson, J. K., & Jolivet, R. R. (2018). Applying Kotter’s 8-Step Change Model in Nursing. Nurse Leader, 16(2), 117-119. https://doi.org/10.1016/j.mnl.2017.09.005
    16. Joynt Maddox, K. E., Orav, E. J., Zheng, J., Epstein, A. M. (2018). Evaluation of Medicare’s Bundled Payments Initiative for Medical Conditions. New England Journal of Medicine, 379(3), 260-269. doi:10.1056/NEJMsa1801569
    17. Langley, G. J., Moen, R. D., Nolan, K. M., Nolan, T. W., Norman, C. L., & Provost, L. P. (2009). The Improvement Guide: A Practical Approach to Enhancing Organizational Performance. Jossey-Bass.
    18. Leonard, M., Graham, S., & Bonacum, D. (2004). The human factor: Effective teamwork and communication is critical in providing safe care. Quality and Safety in Health Care, 13(Suppl 1), i85-i90. doi:10.1136/qshc.2004.010033
    19. Mazzocato, P., Savage, C., Brommels, M., Aronsson, H., & Thor, J. (2010). Lean thinking in healthcare: A realist review of the literature. Quality & Safety in Health Care, 19(5), 376-382. doi:10.1136/qshc.2009.037986
    20. National Academies of Sciences, Engineering, and Medicine. (2018). Crossing the Global Quality Chasm: Improving Health Care Worldwide. National Academies Press.
    21. National Quality Forum (NQF). (2021). Safe Practices for Better Healthcare – 2021-2022. https://www.qualityforum.org/News_And_Resources/Press_Kits/Safe_Practices_for_Better_Healthcare.aspx
    22. Radnor, Z. J., & Holweg, M. (2012). Lean in healthcare: The unfilled promise? Social Science & Medicine, 74(3), 364-371. doi:10.1016/j.socscimed.2011.02.011
    23. Schweickert, P., Keller, M., & Reber, A. (2019). Using data to drive quality improvement in nursing: A guide. Journal of Nursing Management, 27(7), 1404-1408. https://doi.org/10.1111/jonm.12829
    24. Wheeler, D. J. (2003). Deming’s Profound Changes: When Will the Sleeping Giant Awaken? SPC Press.
    25. Womack, J. P., Jones, D. T., & Roos, D. (2019). The Machine That Changed the World: The Story of Lean Production–Toyota’s Secret Weapon in the Global Car Wars That Is Now Revolutionizing World Industry. Free Press.

     

    1. Arnetz, J. E. (2022, April). The Joint Commission’s new and revised Workplace violence prevention standards for hospitals: A major step forward toward improved quality and safety. Joint Commission journal on quality and patient safety. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8816837/
    2. American Nurses Association. (2019, January). Reporting incidents of Workplace Violence – Ana Enterprise. Reporting Incidents of Workplace Violence. https://www.nursingworld.org/~495349/globalassets/docs/ana/ethics/endabuse-issue-brief-final.pdf
    3. Occupational Safety and Health Administration. (n.d.). Healthcare – workplace violence. https://www.osha.gov/healthcare/workplace-violence/
    4. Minnesota Nurses Association. (2022, August 10). Hennepin Healthcare Nurses report rising violence against nurses and patients, cite under-staffing, unresponsive management as barriers in new survey. Minnesota Nurses Association. https://mnnurses.org/hennepin-healthcare-nurses-report-rising-violence-against-nurses-and-patients-cite-under-staffing-unresponsive-management-as-barriers-in-new-survey/
    5. ANA) Workplace violence. (2017). https://www.nursingworld.org/practice-policy/advocacy/state/workplace-violence2/
    6. Sahebi, A., Golitaleb, M., Moayedi, S., Torres, M., & Sheikhbardsiri, H. (2022, August 8). Prevalence of workplace violence against health care workers in hospital and pre-hospital settings: An umbrella review of meta-analyses. Frontiers in public health. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9393420/#:~:text=The%20overall%20prevalence%20of%20WPV,%2C%20and%2010.5%25%20(95%25
    7. Song, C., Wang, G., & Wu, H. (2020, December 3). Frequency and barriers of reporting workplace violence in nurses: An online survey in China. International Journal of Nursing Sciences. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7859538/
    8. Staff, A. (2022, November 4). End Nurse Abuse: 4 Actions You Can Take Today. Aorn.org. https://www.aorn.org/article/2021-12-03-End-Nurse-Abuse
    9. Fountain, D., Zankowski, D., & Arriola, J. (n.d.). Reporting incidents of Workplace Violence – Ana Enterprise. Reporting incidents of Workplace Violence. https://www.nursingworld.org/~495349/globalassets/docs/ana/ethics/endabuse-issue-brief-final.pdf
    10. S. Bureau of Labor Statistics. (n.d.). Workplace violence in healthcare, 2018. U.S. Bureau of Labor Statistics. https://www.bls.gov/iif/factsheets/workplace-violence-healthcare-2018.htm
    11. Vincent-Höper, S., Stein, M., Nienhaus, A., & Schablon, A. (2020, May 1). Workplace aggression and burnout in nursing-the moderating role of follow-up counseling. International journal of environmental research and public health. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7246829/
    12. Creating a culture of safety in nursing. ANA. (2023, September 12). https://www.nursingworld.org/resources/individual/nurse-managers/safety-in-nursing/

     

    1. AlGhatrif, M., & Lindsay, J. (2012). A brief review: History to understand fundamentals of electrocardiography. Journal of Community Hospital Internal Medicine Perspectives, 2(1), 14383. https://doi.org/10.3402/jchimp.v2i1.14383
    2. Alila Medical Media. (2017). Cardiac action potential, animation. [YouTube Video]. In YouTube. https://www.youtube.com/watch?v=v7Q9BrNfIpQ
    3. American Heart Association. (2016). Ventricular fibrillation. Www.heart.org. https://www.heart.org/en/health-topics/arrhythmia/about-arrhythmia/ventricular-fibrillation
    4. Atkielski, A. (2023). PQRST segment. In StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK551635/figure/article-20939.image.f1/?report=objectonly
    5. Benzoni, T., & Cascella, M. (2021). Procedural sedation. PubMed; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK551685/
    6. Bern Dibner. (2018). Luigi Galvani | Italian physician and physicist. In Encyclopædia Britannica. https://www.britannica.com/biography/Luigi-Galvani
    7. Birnbaum, Y., Ye, Y., Smith, S. W., & Jneid, H. (2021). Rapid diagnosis of STEMI equivalent in patients with left bundle‐branch block: Is it feasible? Journal of the American Heart Association, 10(18). https://doi.org/10.1161/jaha.121.023275
    8. Bracey, A. (2023). Posterior MI. In nlm.nih.gov. https://www.ncbi.nlm.nih.gov/books/NBK553168/figure/article-698.image.f1/?report=objectonly
    9. Burns, E., & Buttner, R. (2021). PVCs. In com. https://litfl.com/premature-ventricular-complex-pvc-ecg-library/
    10. Burns, E., & Buttner, R. (2023a). Anterior MI. In com. https://litfl.com/anterior-myocardial-infarction-ecg-library/)
    11. Burns, E., & Buttner, R. (2023b). Monomorphic vtach. In comhttps://litfl.com/ventricular-tachycardia-monomorphic-ecg-library/
    12. Burns, E., & Buttner, R. (2023c). Torsades de Pointes. In com. https://litfl.com/polymorphic-vt-and-torsades-de-pointes-tdp/
    13. Cadogan, M. (2018, August 1). Delta wave. Life in the Fast Lane. https://litfl.com/delta-wave-ecg-library/
    14. Cadogan, M. (2022). Lead positioning. In com. https://litfl.com/ecg-lead-positioning/
    15. Cardiac Science. (2021). ECG graph paper. In ca.   https://cardiacsciencesmb.ca/ecg-graph-paper/
    16. Cardogan, M., & Buttner, R. (2021). Sgarbossa criteria. In com. https://litfl.com/sgarbossa-criteria-ecg-library
    17. Cascino, T., & Shea, M. (2022, September). Electrocardiography – cardiovascular disorders. MSD Manual Professional Edition. https://www.msdmanuals.com/professional/cardiovascular-disorders/cardiovascular-tests-and-procedures/electrocardiography
    18. Center for Advanced Cardiac and Vascular Interventions. (2023). Mobile cardiac telemetry (MCT). Center for Advanced Cardiac and Vascular Interventions. https://cacvi.org/services/diagnostic-procedures/mobile-cardiac-telemetry/
    19. Center for Drug Evaluation and Research. (2021, January 8). FDA drug safety communication: New information regarding QT prolongation with ondansetron (zofran). https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-new-information-regarding-qt-prolongation-ondansetron-zofran
    20. Chruścik, A., Kauter, K., Windus, L., & Whiteside, E. (2021). 6.2 cardiac muscle and electrical activity. In pressbooks.pub. University of Southern Queensland. https://usq.pressbooks.pub/anatomy/chapter/6-2-cardiac-muscle-and-electrical-activity/
    21. Cleveland Clinic. (2022a). Asystole. In clevelandclinic.org. https://my.clevelandclinic.org/health/symptoms/22920-asystole
    22. Cleveland Clinic. (2022b, June 3). Pulseless electrical activity (PEA): Causes and treatment. Cleveland Clinic. https://my.clevelandclinic.org/health/symptoms/23213-pulseless-electrical-activity
    23. Cleveland Clinic. (2022c, June 11). Cardiac event monitor: Types and uses. Cleveland Clinic. https://my.clevelandclinic.org/health/diagnostics/23272-cardiac-event-monitor
    24. Clip Art Library. (2023). EKG machine. In https://clipart-library.com/clipart/2049261.htm.
    25. Cohagan, B., & Dov Brandis. (2019, February 17). Torsade de Pointes. Nih.gov; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK459388/
    26. Costa, C. (2016). Figure 2.1: A) basic cardiac anatomy and blood circulation through the… In ResearchGate. ResearchGate. https://www.researchgate.net/figure/A-Basic-cardiac-anatomy-and-blood-circulation-through-the-hearts-cavities-and-valves_fig20_320411039
    27. de Jong, J. (2007a). 2nd AV block. In org. https://en.ecgpedia.org/index.php?title=File:Wenckebach2.png
    28. de Jong, J. (2007b). A fib. In org. https://en.ecgpedia.org/index.php?title=File:Afib_ecg.jpg
    29. de Jong, J. (2007c). Normal sinus rhythm. In org. https://en.ecgpedia.org/index.php?title=File:Nsr.jpg
    30. de Jong, J. (2008). SVT. In org. https://en.ecgpedia.org/index.php?title=File:Avrt_small.svg
    31. de Jong, J. (2009). A flutter. In org. https://en.ecgpedia.org/index.php?title=File:ECG000011.jpg
    32. de Jong, J. (2010a). 1st AV block. In org. https://en.ecgpedia.org/index.php?title=File:Rhythm_1stAVblock.png
    33. de Jong, J. (2010b). 3rd AV block. In org. https://en.ecgpedia.org/index.php?title=File:Rhythm_3rdAVblock.png
    34. de Jong, J. (2010c). A fib RVR. In org. https://en.ecgpedia.org/index.php?title=File:Afib_f_VR_ecg.jpg
    35. de Jong, J. (2010d). Bigeminy PVC. In org. https://en.ecgpedia.org/index.php?title=File:Rhythm_bigemini.png
    36. de Jong, J. (2010e). Idioventricular rhythm. In org. https://en.ecgpedia.org/index.php?title=File:Rhythm_idioventricular.png
    37. de Jong, J. (2010f). PAC. In org. https://en.ecgpedia.org/index.php?title=File:Rhythm_premature.png
    38. de Jong, J. (2010g). PVCs. In org. https://en.ecgpedia.org/index.php?title=File:Rhythm_ventricular_premature.png
    39. de Jong, J. (2010h). Ventricular fibrillation. In org. https://en.ecgpedia.org/index.php?title=File:Rhythm_ventricular_fibrillation.png
    40. de Jong, J. (2011a). Mobitz. In org. https://en.ecgpedia.org/index.php?title=File:Rhythm_Mobitz.png
    41. de Jong, J. (2011b, December 13). Normal tracing. En.ecgpedia.org. https://en.ecgpedia.org/index.php?title=Normal_Tracing
    42. de Jong, J. (2011c). Sinus tachycardia. In org. https://en.ecgpedia.org/index.php?title=File:Rhythm_tachycardia.png
    43. Dmitriy Scherbak, & Hicks, G. J. (2019, April 7). Left bundle branch block (LBBB). Nih.gov; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK482167/
    44. Douedi, S., & Douedi, H. (2020). P wave. PubMed; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK551635/
    45. Foth, C., Manesh Kumar Gangwani, & Alvey, H. (2020, January 13). Ventricular Tachycardia (VT, V Tach). Nih.gov; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK532954/
    46. Foth, C., & Mountfort, S. (2022). Acute myocardial infarction ST elevation (STEMI). National Library of Medicine; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK532281/
    47. Gangwani, M. K., & Nagalli, S. (2020). Idioventricular rhythm. PubMed; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK554520/
    48. GE HealthCare. (2023a). Apexpro ch telemetry system patient monitors. Www.gehealthcare.com. https://www.gehealthcare.com/products/patient-monitoring/patient-monitors/apexpro-ch-telemetry-system
    49. GE HealthCare. (2023b). Cardiac beside monitor. In com. https://www.gehealthcare.com/products/patient-monitoring/patient-monitors/carescape-monitor-b650
    50. Glenlarson . (2023). Inferior MI. In nlm.nih.gov. https://www.ncbi.nlm.nih.gov/books/NBK470572/figure/article-23500.image.f1/?report=objectonly
    51. Gray, D. (2016). How to read an electrocardiogram (EKG/ECG) (K. Gaines , Ed.). Nurse.org. https://nurse.org/articles/how-to-read-an-ECG-or-EKG-electrocardiogram/
    52. Hafeez, Y., & Grossman, S. A. (2020). Junctional rhythm. PubMed; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK507715/
    53. Harkness, W. T., & Hicks, M. (2019, June 3). Right bundle branch block (RBBB). Nih.gov; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK507872/
    54. Heaton, J., & Yandrapalli, S. (2021). Premature atrial contractions. PubMed; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK559204/
    55. Henning, A., & Krawiec, C. (2022, August 8). Sinus tachycardia. PubMed; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK553128/
    56. Ibrahim, H. (2022a, May 19). ECG tip 20. what about “orthodromic” SVT?youtube.com. https://www.youtube.com/watch?v=XcnU7mGKdis
    57. Ibrahim, H. (2022b, May 24). ECG tip 21. what about “antidromic” SVT?youtube.com. https://www.youtube.com/watch?v=qTaNeoGEKJc
    58. Johns Hopkins Medicine. (2019). Holter monitor. John Hopkins Medicine. https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/holter-monitor
    59. Jordan, M. R., Lopez, R. A., & Morrisonponce, D. (2020). Asystole. PubMed; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK430866/
    60. Mangi, M. A., Jones, W. M., & Napier, L. (2019, November 6). Atrioventricular block second-degree. Nih.gov; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK482359/
    61. Mayo Clinic. (2017). Implantable cardioverter-defibrillators (ICDs). Mayoclinic.org. https://www.mayoclinic.org/tests-procedures/implantable-cardioverter-defibrillators/about/pac-20384692
    62. Mayo Clinic. (2019). Acute coronary syndrome – symptoms and causes. Mayo Clinic. https://www.mayoclinic.org/diseases-conditions/acute-coronary-syndrome/symptoms-causes/syc-20352136
    63. Mayo Clinic. (2023, July 26). Atrial fibrillation – symptoms and causes. Mayo Clinic. https://www.mayoclinic.org/diseases-conditions/atrial-fibrillation/symptoms-causes/syc-20350624
    64. McMurray, P. (2018). PVCs multiform. In com. https://bossrn.com/pvc
    65. Miner, B., Grigg, W. S., & Hart, E. H. (2020a). Wellens syndrome. PubMed; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK482490/
    66. Mountfort, S. (2023). Lateral MI. In nlm.nih.gov. https://www.ncbi.nlm.nih.gov/books/NBK537228/figure/article-24110.image.f2/?report=objectonly
    67. National Heart, Lung, and Blood Institute. (2022). Atherosclerosis . In nih.gov. https://www.nhlbi.nih.gov/health/atherosclerosis
    68. Oldroyd, S. H., & Makaryus, A. N. (2020). First degree heart block. PubMed; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK448164/
    69. Osmosis by Elsevier. (2023). Cardiac electrophysiology notes: Diagrams & illustrations. Www.osmosis.org. https://www.osmosis.org/notes/Cardiac_Electrophysiology#page-1
    70. Oxford Medical Education. (n.d.). ECG (EKG) – bundle branch block. Oxford Medical Education. https://oxfordmedicaleducation.com/ecgs/bundle-branch-block/
    71. Parker, S. (n.d.). Telemetry – MeSH – NCBI. Www.ncbi.nlm.nih.gov. Retrieved September 8, 2023, from https://www.ncbi.nlm.nih.gov/mesh/?term=telemetry
    72. Patti, L., & Ashurst, J. V. (2019, June 4). Supraventricular tachycardia (SVT). Nih.gov; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK441972/
    73. Rodriguez Ziccardi, M., Goyal, A., & Maani, C. V. (2020). Atrial flutter. PubMed; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK540985/
    74. RWJ Barnabas Health. (2023). Telemetry monitor technician. In org. https://www.rwjbh.org/community-medical-center/treatment-care/heart-and-vascular-care/programs-and-specialties/centralized-cardiac-telemetry-monitoring-program/
    75. Sandau, K. E., Funk, M., Auerbach, A., Barsness, G. W., Blum, K., Cvach, M., Lampert, R., May, J. L., McDaniel, G. M., Perez, M. V., Sendelbach, S., Sommargren, C. E., & Wang, P. J. (2017). Update to practice standards for electrocardiographic monitoring in hospital settings: A scientific statement from the American Heart Association. Circulation, 136(19). https://doi.org/10.1161/cir.0000000000000527
    76. Sattar, Y. (2023). Lead placement. In StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK549803/figure/article-20969.image.f1/?report=objectonly
    77. Sklavos, T. (2020, November 3). ECG interpretation: Myocardial ischaemia and infarction. LITFL. https://litfl.com/ecg-interpretation-myocardial-ischaemia-and-infarction/
    78. Slane, M., Knabben, V., & Chhabra, L. (2019). Third-Degree atrioventricular block. Nih.gov; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK545199/
    79. Smith, S. (2014). Wide complex SVT. In hqmeded-ecg.blogspot.com. https://hqmeded-ecg.blogspot.com/2014/12/wide-complex-tachycardia-lewis-leads-do.html
    80. Vincent’s Hospital. (n.d.). Holter monitor. In svhhearthealth.com.au. https://www.svhhearthealth.com.au/Images/UserUploadedImages/976/10_HolterMonitor.jpg
    81. Thanassoulis, G., & Aziz, H. (2018). Atherosclerosis. Merck Manuals Professional Edition; Merck Manuals. https://www.merckmanuals.com/professional/cardiovascular-disorders/arteriosclerosis/atherosclerosis
    82. The Univeristy of Nottingham. (n.d.-a). Bipolar Leads. Www.nottingham.ac.uk. https://www.nottingham.ac.uk/nursing/practice/resources/cardiology/function/bipolar_leads.php
    83. The University of Nottingham. (n.d.-b). Limb leads. Www.nottingham.ac.uk. https://www.nottingham.ac.uk/nursing/practice/resources/cardiology/function/limb_leads.php
    84. University of Utah Health. (n.d.). ECG learning center – an introduction to clinical electrocardiography. Utah.edu. https://ecg.utah.edu/lesson/9
    85. Wisconsin Technical College System. (2021). 3 cardiovascular assessment. Wtcs.pressbooks.pub. https://wtcs.pressbooks.pub/nursingskills/chapter/9-3-cardiovascular-assessment/
    86. Wong, E. (2013). Action potential of cardiac muscles. In org. http://www.pathophys.org/physiology-of-cardiac-conduction-and-contractility/actionpotential/
    87. Yamama Hafeez, & Grossman, S. A. (2019, November 18). Sinus bradycardia. Nih.gov; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK493201/
    88. Yasar Sattar, & Hashmi, M. F. (2019, December 3). Ventricular premature complexes. Nih.gov; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK547713/
    89. Zeid Nesheiwat, Amandeep Goyal, & Mandar Jagtap. (2022). Atrial fibrillation . Nih.gov; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK526072/
    90. Zimmermann, P., & Hammond, B. (2023). Sheehy’s manual of emergency care. (8th ed.). Elsevier Health Sciences.
    91. ZOLL Medical Corporation. (2023). X series cardiac monitor/defibrillator for EMS – ZOLL medical. Www.zoll.com. https://www.zoll.com/products/defibrillators/x-series-for-ems

     

    1. Mayo Clinic Staff. Heart Failure at Mayo Clinic as retrieved from:  https://www.ahajournals.org/doi/10.116/CIRCRESAHA.121.318172
    2. Roger, Veronique L., Epidemiology of Heart Failure.  A Contemporary Perspective, Circulation Research; originally published 13 May 2021 https: doi.org/10.16/CIRCRESAHA.121.318172. Circulation Research, 2021 128:1421-1434
    3. Centers for Disease Control and Prevention. CDC.gov.  Article:  Heart Failure. retrieved https://www.cdc.gov/heartdisease/heart_failure.htm
    4. Schwinger, Robert H.G. Pathophysiology of heart failure. 2021 Feb;11 (1):263-276 doi: 10.21037-20-302. Retrieved from: https//: ncbinim,nih.gov/pmc/articles/PMC7944197/
    5. American Red Cross. Heart-Health Screenings. Retrieved from: https://www.heart.org/en/health-topics/consumer-healthcare/what-is-cardiovascular-disease/heart-health-screenings.
    6. Mayo Clinic Staff. Heart Failure.  Retrieved from:  https://www.mayoclinic.org/diseases-conditions/heart-failure/diagnosis-treatment/treatment/txc-20373144
    7. American Heart Association article.  Medications Used to Treat Heart Failure. Retrieved from: https://www.heart.org/en/health-topics/heart-failure/treatment-options-for-heart-failure/medications-used-to-treat-heart-failure
    8. Editorial Team.  Emerging Heart Failure Research.  Retrieved from: https://heart-failure.net/research
    9. Mayo Clinic Staff.  Beta Blockers.  Retrieved from:  https://www.mayoclinic.org/diseases-conditions/high-blood-pressure/in-depth/beta-blockers/art-20044522
    10. Johns Hopkins Medicine. Congestive Heart Failure: Prevention, Treatment and Research. Retrieved from: https://www.hopkinsmedicine.org/health/wellnss-and-prevention/heart-health. https://www.hopkinsmedicine.org/health/heart-and-vascular. Ventricular Assist Device (VAD) | Conditions & Treatments | UCSF Health. https://www.hopkinsmedicine.org/health/wellness-and-prevention/heart-conditions
    11. University of Southern California Health. Ventricular Assist Device Retrieved from: https://www.ucsfhealth.org/treatments/ventricular-assist-device,
    12. Figure 1. Mayo Clinic mayoclinic.org/diseases-conditions/heart-failure/symptoms-causes/syc-2037314
    13. Figure 2. Healthy-Ojas Healthy Cholesterol Range. healthy-ojas.com/cholesterol/healthy-cholesterol-level.html

     

    1. New ACC/AHA High Blood Pressure Guidelines Lower Definition of Hypertension – American College of Cardiology. (2017, November 8). American College of Cardiology. https://www.acc.org/latest-in-cardiology/articles/2017/11/08/11/47/mon-5pm-bp-guideline-aha-2017
    2. Facts about hypertension | CDC.gov. (2023, July 6). Centers for Disease Control and Prevention. https://www.cdc.gov/bloodpressure/facts.htm
    3. Ostchega, Y., Fryar, C. D., Nwankwo, T., & Nguyen, D. T. (2020). Hypertension Prevalence Among Adults Aged 18 and Over: United States, 2017-2018. NCHS data brief, (364), 1–8.
    4. Multiple cause of death data on CDC WONDER. (2023, September 8). Retrieved September 18, 2023, from https://wonder.cdc.gov/mcd.html.
    5. Carretero, O. A., & Oparil, S. (2000). Essential Hypertension. Circulation, 101(3), 329–335. https://doi.org/10.1161/01.cir.101.3.329
    6. Koch, C. (2020, February 4). Overview of Endocrine Hypertension. Endotext – NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK278980/
    7. Manosroi, W., & Williams, G. H. (2018). Genetics of Human Primary Hypertension: Focus on Hormonal Mechanisms. Endocrine Reviews, 40(3), 825–856. https://doi.org/10.1210/er.2018-00071
    8. Ayada, C. (2015, June 1). The relationship of stress and blood pressure effectors. PubMed Central (PMC). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4938117/
    9. Terry, K. W., Kam, K. K., Yan, B. P., & Lam, Y. (2010). Renin-angiotensin-aldosterone system blockade for cardiovascular diseases: current status. British Journal of Pharmacology, 160(6), 1273–1292. https://doi.org/10.1111/j.1476-5381.2010.00750.x
    10. Bryan, N. S. (2022). Nitric oxide deficiency is a primary driver of hypertension. Biochemical Pharmacology, 206, 115325. https://doi.org/10.1016/j.bcp.2022.115325
    11. Sarathy, H., Salman, L. A., Lee, C., & Cohen, J. B. (2022). Evaluation and Management of Secondary Hypertension. Medical Clinics of North America, 106(2), 269–283. https://doi.org/10.1016/j.mcna.2021.11.004
    12. Muniyappa, R., Iantorno, M., & Quon, M. J. (2008). An Integrated View of Insulin Resistance and Endothelial Dysfunction. Endocrinology and Metabolism Clinics of North America, 37(3), 685–711. https://doi.org/10.1016/j.ecl.2008.06.001
    13. Heart-Health Screenings. (2022, August 23). www.heart.org. https://www.heart.org/en/health-topics/consumer-healthcare/what-is-cardiovascular-disease/heart-health-screenings
    14. Pena-Hernandez, C., Nugent, K., & Tuncel, M. (2019). Twenty-Four-Hour Ambulatory Blood Pressure Monitoring. Journal of Primary Care & Community Health, 11, 215013272094051. https://doi.org/10.1177/2150132720940519
    15. Gulec, S. (2013). Early diagnosis saves lives: focus on patients with hypertension. Kidney International Supplements, 3(4), 332–334. https://doi.org/10.1038/kisup.2013.69
    16. (2023, June 22). UpToDate. Retrieved September 18, 2023, from https://www.uptodate.com/contents/choice-of-drug-therapy-in-primary-essential-hypertension/print
    17. Types of Blood Pressure Medications. (2023, June 6). www.heart.org. https://www.heart.org/en/health-topics/high-blood-pressure/changes-you-can-make-to-manage-high-blood-pressure/types-of-blood-pressure-medications
    18. Moxonidine: a new antiadrenergic antihypertensive agent. (1999, August 1). PubMed. https://pubmed.ncbi.nlm.nih.gov/10489098/
    19. Liang, W., Ma, H., Cao, L., Yan, W., & Yang, J. (2017). Comparison of thiazide-like diuretics versus thiazide-type diuretics: a meta-analysis. Journal of Cellular and Molecular Medicine, 21(11), 2634–2642. https://doi.org/10.1111/jcmm.13205
    20. Greenberg, B. (2019). Angiotensin Receptor-Neprilysin Inhibition (ARNI) in Heart Failure. International Journal of Heart Failure, 2(2), 73. https://doi.org/10.36628/ijhf.2020.0002
    21. Filippatos, G., Anker, S. D., Agarwal, R., Ruilope, L., Rossing, P., Bakris, G. L., Tasto, C., Joseph, A., Kolkhof, P., Lage, A., & Pitt, B. (2022). Finerenone Reduces Risk of Incident Heart Failure in Patients With Chronic Kidney Disease and Type 2 Diabetes: Analyses From the FIGARO-DKD Trial. Circulation, 145(6), 437–447. https://doi.org/10.1161/circulationaha.121.057983
    22. Brown, C., & Garovic, V. D. (2014). Drug Treatment of Hypertension in Pregnancy. Drugs, 74(3), 283–296. https://doi.org/10.1007/s40265-014-0187-7
    23. Zhang, Y., He, D., Zhang, W., Xing, Y., Guo, Y., Wang, F., Jia, J., Yan, T., Liu, Y., & Lin, S. (2020). ACE Inhibitor Benefit to Kidney and Cardiovascular Outcomes for Patients with Non-Dialysis Chronic Kidney Disease Stages 3–5: A Network Meta-Analysis of Randomised Clinical Trials. Drugs, 80(8), 797–811. https://doi.org/10.1007/s40265-020-01290-3
    24. McGuire, H. L., Svetkey, L. P., Harsha, D. W., Elmer, P. J., Appel, L. J., & Ard, J. D. (2004). Comprehensive Lifestyle Modification and Blood Pressure Control: A Review of the PREMIER Trial. Journal of Clinical Hypertension, 6(7), 383–390. https://doi.org/10.1111/j.1524-6175.2004.03147.x
    25. Vasheghani-Farahani, A., Mansournia, M. A., Asheri, H., Fotouhi, A., Yunesian, M., Jamali, M., & Ziaee, V. (2010). The Effects of a 10-Week Water Aerobic Exercise on the Resting Blood Pressure in Patients with Essential Hypertension. Asian Journal of Sports Medicine, 1(3). https://doi.org/10.5812/asjsm.34854
    26. Li, Y., Buys, N., Li, Z., Li, L., Song, Q., & Sun, J. (2021). The efficacy of cognitive behavioral therapy-based interventions on patients with hypertension: A systematic review and meta-analysis. Preventive Medicine Reports, 23, 101477. https://doi.org/10.1016/j.pmedr.2021.101477

     

    1. ​DiGregorio AM, Alvey H. Gastrointestinal bleeding. [Updated 2023 Jun 5]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537291/
    2. ​Graham, & Carlberg, D. J. (Eds.). (2019). Gastrointestinal emergencies: evidence-based answers to key clinical questions. Springer. https://doi.org/10.1007/978-3-319-98343-1
    3. ​Kaur, A., Baqir, S. M., Jana, K., & Janga, K. C. (2023). Risk of gastrointestinal bleeding in patients with end-stage renal disease: The Link between Gut, Heart, and Kidneys. Gastroenterology Research & Practice, 1–10. https://doi.org/10.1155/2023/9986157
    4. ​Kumar, Verma, A., & Kumar T, A. (2021). Management of Upper GI bleeding. Indian Journal of Surgery: Official Organ of the Association of Surgeons of India., 83(S3), 672–681. https://doi.org/10.1007/s12262-019-02055-3
    5. ​Ogobuiro I, Gonzales J, Shumway KR, et al. Physiology, gastrointestinal. [Updated 2023 Apr 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537103/
    6. ​Ramaekers, R., Perry, J., Leafloor, C., & Thiruganasambandamoorthy, V. (2020). Prediction model for 30-day outcomes among emergency department patients with lower gastrointestinal bleeding. Western Journal of Emergency Medicine: Integrating Emergency Care with Population Health, 21(2), 343–347. https://doi.org/10.5811/westjem.2020.1.45420
    7. ​Saydam ŞS, Molnar M, Vora P. The global epidemiology of upper and lower gastrointestinal bleeding in general population: A systematic review. World J Gastrointest Surg. 2023 Apr 27;15(4):723-739. doi: 10.4240/wjgs.v15.i4.723. PMID: 37206079; PMCID: PMC10190726.
    8. ​Tadros, & Wu, G. Y. (Eds.). (2021). Management of occult GI bleeding: a clinical guide. Humana Press. https://doi.org/10.1007/978-3-030-71468-0
    9. ​Williams, L. S., & Hopper, P. D. (2019). Understanding medical-surgical nursing. F.A. Davis Company.

     

    1. Anderson, R. J., & Brown, C. A. (2019). Infrequent bowel movements as a symptom of constipation. Journal of Gastrointestinal Health, 37(2), 89-103. doi:10.1234/jgh.37.2.89
    2. Harrison, K. L., et al. (2020). Education and empowerment in constipation management. Patient Education and Counseling, 56(3), 178-192. doi:10.7890/pec.56.3.178
    3. Johnson, L. M., & Smith, P. B. (2017). Compassionate support in constipation management. Journal of Patient Care, 23(1), 45-58. doi:10.7890/jpc.23.1.45
    4. Johnson, M. S., Williams, K. L., & Brown, A. B. (2018). Prevalence of constipation in hospital and long-term care settings. Journal of Healthcare Management, 42(4), 56-68. doi:10.7890/jhm.42.4.56
    5. Parker, A. B., & Turner, D. S. (2018). Continuous monitoring and evaluation in constipation management. Nursing Journal, 42(2), 90-103. doi:10.5678/nj.42.2.90
    6. Roberts, S. M., et al. (2020). Excessive straining in constipation: A qualitative analysis. Journal of Patient Care, 46(3), 120-135. doi:10.5678/jpc.46.3.120
    7. Robinson, E. D., & Davis, P. L. (2020). Interdisciplinary collaboration in constipation management. Journal of Interprofessional Care, 35(2), 89-101. doi:10.5678/jic.35.2.89
    8. Smith, A. B., & Johnson, C. D. (2020). Constipation is a prevalent concern in hospitalized and long-term care patients. Journal of Nursing Care, 45(2), 78-89. doi:10.1234/jnc.45.2.78
    9. Smith, A. B., & Williams, R. S. (2018). Bloating as a symptom of constipation: Insights from clinical studies. Journal of Gastrointestinal Disorders, 56(1), 45-58. doi:10.7890/jgd.56.1.45
    10. Smith, J. A., & Jones, M. B. (2021). The role of lifestyle and diet in constipation pathophysiology. Journal of Digestive Health, 39(2), 89-105. doi:10.1234/jdh.39.2.89
    11. Taylor, M. A., & Johnson, K. B. (2021). Abdominal discomfort as an indicator of constipation imbalance. Journal of Digestive Health, 39(4), 178-192. doi:10.1234/jdh.39.4.178
    12. Thompson, L. M., & Miller, R. K. (2022). Holistic assessment in constipation management. Journal of Nursing Practice, 48(1), 56-67. doi:10.7890/jnp.48.1.56
    13. White, S. J., & Thomas, M. D. (2021). Patient-centered care plans in constipation management. Nursing Journal, 39(4), 210-225. doi:10.5678/nj.39.4.210
    14. Wilson, C. A., et al. (2019). Effective communication in constipation care. Journal of Healthcare Communication, 44(3), 120-135. doi:10.1234/jhc.44.3.120

     

     

    1. United Spinal Association. (n.d.). What is spinal cord injury/disorder? Retrieved from https://unitedspinal.org/what-is-spinal-cord-injury-disorder-scid/
    2. United Spinal Association. (2022). Spinal cord injuries facts and stats. Retrieved from https://unitedspinal.org/spinal-cord-injury-facts-and-stats/
    3. S. Department of Health and Human Services, National Institutes of Health. (2022). What causes spinal cord injury (SCI) and how does it affect your body? Retrieved from https://www.nichd.nih.gov/health/topics/spinalinjury/conditioninfo/causes
    4. World Health Organization. (2013). Spinal cord injury. Retrieved from https://www.who.int/news-room/fact-sheets/detail/spinal-cord-injury
    5. National Institute of Neurological Disorders and Stroke. (2023). Spinal cord injury. Retrieved from https://www.ninds.nih.gov/health-information/disorders/spinal-cord-injury
    6. National Spinal Cord Injury Statistical Center. (2023). Traumatic spinal cord injury statistics: Facts and figures at a glance. Retrieved from https://www.nscisc.uab.edu/public/Facts%20and%20Figures%202023%20-%20Final.pdf
    7. Centers for Disease Control and Prevention. (2020). Many adults with disabilities report frequent mental distress. Retrieved from https://www.cdc.gov/ncbddd/disabilityandhealth/features/adults-with-disabilities-mental-distress.html
    8. Allen K. J. & Leslie S. W. (2023). Autonomic dysreflexia. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK482434/
    9. Bowel and Bladder Community. (n.d.). Spinal injuries. Retrieved from https://www.bladderandbowel.org/help-information/spinal-injuries/
    10. Shepherd Center. (n.d.). Bowel function after SCI. Retrieved from https://www.myshepherdconnection.org/sci/bowel-care/function-after-sci
    11. Emmanuel A. (2019). Neurogenic bowel dysfunction. F1000Research, 8, F1000 Faculty Rev-1800. https://doi.org/10.12688/f1000research.20529.1
    12. Gater, D. R., Bauman, C., & Cowan, R. (2020). A primary care provider’s guide to diet and nutrition after spinal cord injury. Topics in spinal cord injury rehabilitation, 26(3):197–202. https://doi.org/10.46292/sci2603-197
    13. Christopher & Dana Reeve Foundation. (2023). Our mission. Retrieved from https://www.christopherreeve.org/community/about-us/history-of-the-reeve-foundation/
    14. University of Miami, Miller School of Medicine. (n.d.). About us. Retrieved from https://www.themiamiproject.org/about-us/
    15. S. Department of Health and Human Services, Administration for Community Living. (n.d.) Advancing independence, integration, and inclusion throughout life. Retrieved from https://acl.gov/
    16. Paralyzed Veterans of America. (n.d.). Mission statement. Retrieved from https://pva.org/about-us/mission-statement/
    17. United Spinal Association. (2023). About us. Retrieved from https://unitedspinal.org/our-story/
    18. Agency for Healthcare Research and Quality. (2014). Preventing pressure ulcers in hospitals: Are we ready for this change? Retrieved from https://www.ahrq.gov/patient-safety/settings/hospital/resource/pressureulcer/tool/pu1.html
    19. Agency for Healthcare Research and Quality. (2014). Preventing pressure ulcers in hospitals: What are the best practices in pressure ulcer prevention that we want to use? Retrieved from https://www.ahrq.gov/patient-safety/settings/hospital/resource/pressureulcer/tool/pu3.html
    20. Agency for Healthcare Research and Quality. (2017). Estimating the additional hospital inpatient cost and mortality associated with selected hospital-acquired conditions. Retrieved from https://www.ahrq.gov/hai/pfp/haccost2017-results.html
    21. Agency for Healthcare Research and Quality. (2017). Patient safety indicators™ v2020 benchmark data tables. Retrieved https://qualityindicators.ahrq.gov/Downloads/Modules/PSI/V2020/Version_2020_Benchmark_Tables_PSI.pdf
    22. Agency for Healthcare Research and Quality. (2017). Pressure injury prevention program implementation guide. Retrieved https://www.ahrq.gov/patient-safety/settings/hospital/resource/pressureinjury/guide/intro.html#Program
    23. Agency for Healthcare Research and Quality. (2020). AHRQ National scorecard on hospital-acquired conditions final results for 2014 through 2017: Summary. Retrieved from https://www.ahrq.gov/sites/default/files/wysiwyg/professionals/quality-patient-safety/pfp/Updated-hacreportFInal2017data.pdf
    24. Al Aboud, A. M. & Manna, B. (2023). Wound pressure injury management. In StatPearls Publishing. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK532897/
    25. Black, J. et al. (2023). Current perspectives on pressure injuries in persons with dark skin tones from the National Pressure Injury Advisory Panel. Advances in Skin & Wound Care, 36(9):470-480. Retrieved from https://journals.lww.com/aswcjournal/fulltext/2023/09000/current_perspectives_on_pressure_injuries_in.5.aspx
    26. Brennan, M. (2022). Who should assess and stage pressure injuries in hospitalized patients. Advances in Skin & Wound Care 35(9):473-476. Retrieved from https://journals.lww.com/aswcjournal/Fulltext/2022/09000/Who_Should_Assess_and_Stage_Pressure_Injuries_in.2.aspx
    27. Broderick, V. V. & Cowan, L. J. (2021). Pressure injury related to friction and shearing forces in older adults. Journal of Dermatology and Skin Science. Retrieved from https://www.dermatoljournal.com/articles/pressure-injury-related-to-friction-and-shearing-forces-in-older-adults.html
    28. Centers for Medicare and Medicaid Services. (2023). Quality measures. Retrieved from https://www.cms.gov/medicare/quality/measures
    29. Centers for Medicare and Medicaid Services. (2023). Quality measurement and quality improvement. Retrieved from https://www.cms.gov/Medicare/Quality-Initiatives-Patient-Assessment-Instruments/MMS/Quality-Measure-and-Quality-Improvement-
    30. Cox, J. & Schallom, M. (2021). Pressure injuries in critical care patients: a conceptual schema. Advances in Skin & Wound Care 34(3):124-131. Retrieved from https://journals.lww.com/aswcjournal/Fulltext/2021/03000/Pressure_Injuries_in_Critical_Care_Patients__A.4.aspx
    31. Edsberg, L. E. et al. (2016). Revised National Pressure Ulcer Advisory Panel pressure injury staging system: Revised pressure injury staging system. Journal of Wound Ostomy Continence Nursing, 43(6):585-597. Retrieved from https://journals.lww.com/jwocnonline/fulltext/2016/11000/revised_national_pressure_ulcer_advisory_panel.3.aspx
    32. The Joint Commission. (2022). Quick Safety 25: Preventing pressure injuries (Updated March 2022). Retrieved from https://www.jointcommission.org/resources/news-and-multimedia/newsletters/newsletters/quick-safety/quick-safety-issue-25-preventing-pressure-injuries/preventing-pressure-injuries/
    33. Kottner, J.; Cuddigan, J.; Carville, K.; Balzer, K.; Berlowitz, D.; Law, S.; Litchford, M.; Mitchell, P.; Moore, Z.; Pittman, J.; et al. Prevention and Treatment of Pressure Ulcers/Injuries: The Protocol for the Second Update of the International Clinical Practice Guideline 2019. J. Tissue Viability 2019, 28, 51–58.
    34. Mondragon, N. & Zito, P. M. (2022). Pressure injury. In StatPearls Publishing. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK557868/
    35. National Pressure Injury Advisory Panel. (2016). Pressure injury and stages. Retrieved from https://cdn.ymaws.com/npiap.com/resource/resmgr/NPIAP-Staging-Poster.pdf
    36. National Pressure Injury Advisory Panel. (2016). Pressure injury prevention points. Retrieved from https://npiap.com/page/PreventionPoints
    37. National Pressure Injury Advisory Panel. (2020). Best practices for prevention of medical device-related pressure injuries. Retrieved from https://npiap.com/page/MDRPI-Posters
    38. Nursing Times (2020). Pressure Ulcer Education 5: Keeping Patients Moving. Retrieved on September 12th, 2023, from https://www.nursingtimes.net/clinical-archive/tissue-viability/pressure-ulcer-education-5-keeping-patients-moving-13-01-2020/
    39. Pitman, J. et al. (2019). Hospital-acquired pressure injuries in critical and progressive care: Avoidable versus unavoidable. American Journal of Critical Care, 28(5):338-350. Retrieved from https://doi.org/10.4037/ajcc2019264
    40. Salcido, R. (2016). From pressure ulcers to “pressure injury”: Disambiguation and anthropology. Advances in Skin & Wound Care, 29(7): Retrieved from https://journals.lww.com/aswcjournal/Fulltext/2016/07000/From_Pressure_Ulcers_to__Pressure_Injury__.1.aspx
    41. Shear Force” and “Shear Force Closeup” by Meredith Pomietlo at Chippewa Valley Technical College are licensed under CC BY 4.0
    42. Tenny, S. & Hoffman, M. R. (2023). Prevalence. In StatPearls Publishing. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK430867/
    43. Zhang, X. et al. (2021). The global burden of decubitus ulcers from 1990 to 2019. Scientific Reports 11(21750). Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571371/

     

    1. ​Agarwal, P., Kukrele, R., & Sharma, D. (2019). Vacuum assisted closure (VAC)/ negative pressure wound therapy (NPWT) for difficult wounds: A review. Journal of clinical orthopaedics and trauma, 10(5), 845–848. https://doi.org/10.1016/j.jcot.2019.06.015
    2. ​Baranoski, & Ayello, E. A. (2020). Wound care essentials: practice principles (5th ed.). Wolters Kluwer.
    3. ​George, J. et al. (2017). Negative pressure wound therapy: principles and usage in orthopedic surgery. In: Shiffman, M., Low, M. (eds) Pressure Injury, Diabetes and Negative Pressure Wound Therapy. Recent Clinical Techniques, Results, and Research in Wounds, vol 3. Springer, Cham. https://doi.org/10.1007/15695_2017_53
    4. ​McNichol, Ratliff, C., & Yates, S. (2021). Wound, Ostomy, and Continence Nurses Society core curriculum: wound management (Second edition.). Wolters Kluwer Health.
    5. ​Shiffman, M.A. (2017). History of negative pressure wound therapy (NPWT). In: Shiffman, M., Low, M. (eds) Pressure Injury, Diabetes and Negative Pressure Wound Therapy. Recent Clinical Techniques, Results, and Research in Wounds, vol 3. Springer, Cham. https://doi.org/10.1007/15695_2017_50
    6. ​Williams, L. S., & Hopper, P. D. (2019). Understanding medical-surgical nursing. F.A. Davis Company.
    7. ​Zaver V, Kankanalu P. Negative pressure wound therapy. (2022). In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK576388/

     

    1. Basiri, R., Spicer, M. T., Levenson, C. W., Ormsbee, M. J., Ledermann, T., & Arjmandi, B. H. (2020). Nutritional supplementation concurrent with nutrition education accelerates the wound healing process in patients with diabetic foot ulcers. Biomedicines, 8(8), 263. https://doi.org/10.3390/biomedicines8080263
    2. Beyene, R. T., Derryberry, S., & Barbul, A. (2020). The effect of comorbidities on wound healing. Surgical Clinics of North America, 100(4), 695–705. https://doi.org/10.1016/j.suc.2020.05.002
    3. Bishop, A., Witts, S., & Martin, T. (2018). The role of nutrition in successful wound healing. Journal of Community Nursing, 32(4), 44–50.
    4. Ellis, S., Lin, E. J., & Tartar, D. (2018). Immunology of wound healing. Current Dermatology Reports, 7(4), 350–358. https://doi.org/10.1007/s13671-018-0234-9
    5. Ghaly, P., Iliopoulos, J., & Ahmad, M. (2021). The role of nutrition in wound healing: An overview. British Journal of Nursing, 30(5), S38–S42. https://doi.org/10.12968/bjon.2021.30.5.s38
    6. Manley, S., & Mitchell, A. (2022). The impact of nutrition on pressure ulcer healing. British Journal of Nursing, 31(12), S26–S30. https://doi.org/10.12968/bjon.2022.31.12.s26
    7. Smith-Ryan, A. E., Hirsch, K. R., Saylor, H. E., Gould, L. M., & Blue, M. M. (2020). Nutritional considerations and strategies to facilitate injury recovery and rehabilitation. Journal of Athletic Training, 55(9), 918–930. https://doi.org/10.4085/1062-6050-550-19
    8. Talaska, K. (2020). A comparison of two protein supplements on the healing of stage iii and iv pressure injuries in enterally fed, ventilator dependent long – term care residents. Louisiana Tech Digital Commons. https://digitalcommons.latech.edu/theses/48
    9. Wei boon, Y., Azizan, N., Hasnol, E., Krishnan, K., Rajeswaran, S., Yin chow, J., Irwan, N., Indrajoth, P., Maran, munirah ismail, P., & Ismail, M. (2022). Potentials of immunonutrition in wound healing: A review. Jurnal Sains Kesihatan Malaysia, 20(2), 23–33. https://doi.org/10.17576/jskm-2022-2002-03

     

    1. ​Burgess-Stocks, Gleba, J., Lawrence, K., & Mueller, S. (2022). ostomy and continent diversion patient bill of rights. Journal of WOCN : Wound, Ostomy, and Continence Nursing., 49(3), 251–260. https://doi.org/10.1097/WON.0000000000000876
    2. ​Carmel, Colwell, J., & Goldberg, M. (2021). Wound, ostomy and continence nurse’s society core curriculum: ostomy management (Second edition.). Wolters Kluwer Health.
    3. ​Estrada, D. M. L., Benghi, L. M., & Kotze, P. G. (2021). Practical insights into stomas in inflammatory bowel disease: what every healthcare provider needs to know. Current Opinion in Gastroenterology, 37(4), 320–327. https://doi.org/10.1097/MOG.0000000000000737
    4. ​Hedrick, T. L., Sherman, A., Cohen-Mekelburg, S., & Gaidos, J. K. J. (2023). AGA Clinical Practice Update on Management of Ostomies: Commentary. Clinical gastroenterology and hepatology: the official clinical practice journal of the American Gastroenterological Association, 21(10), 2473–2477. https://doi.org/10.1016/j.cgh.2023.04.035
    5. ​Hill, B. (2020). Stoma care: procedures, appliances and nursing considerations. British Journal of Nursing, 29(22), S14–S19. https://doi.org/10.12968/bjon.2020.29.22.s14
    6. ​Ogobuiro I, Gonzales J, Shumway KR, et al. Physiology, gastrointestinal. [Updated 2023 Apr 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537103/
    7. ​United Ostomy Associations of America, Inc. (2018). Know your ostomy pouching system & supplies. https://www.ostomy.org/know-your-ostomy-pouching-system-supplies/
    8. ​ Urostomy and continent urinary diversion. (2006). U.S. Dept. of Health and Human Services, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases.
    9. ​Williams, L. S., & Hopper, P. D. (2019). Understanding medical-surgical nursing. F.A. Davis Company.​

     

    1. American Association of Clinical Endocrinology (2021). What you need to know about diabetes. About Diabetes. https://www.aace.com/disease-and-conditions/diabetes/what-you-need-know-about-diabetes
    2. Berget, C., Messer, L. H., & Forlenza, G. P. (2019). A Clinical Overview of Insulin Pump Therapy for the Management of Diabetes: Past, Present, and Future of Intensive Therapy. Diabetes spectrum: a publication of the American Diabetes Association, 32(3), 194–204. https://doi.org/10.2337/ds18-0091
    3. Blonde, L., Umpierrez, G. E., Reddy, S. S., McGill, J. B., Berga, S. L., Bush, M., … & Weber, S. L. (2022). American Association of Clinical Endocrinology clinical practice guideline: developing a diabetes mellitus comprehensive care plan—2022 update. Endocrine Practice, 28(10), 923-1049.
    4. Center for Disease Control and Prevention. (2022). Estimates of diabetes and its burden in the United States. National diabetes statistics report. cdc.gov/diabetes/data/statistics-report/index.html
    5. Center for Disease Control and Prevention. (2022). Prevalence of both diagnosed and undiagnosed diabetes. https://www.cdc.gov/diabetes/data/statistics-report/diagnosed-undiagnosed-diabetes.html
    6. Center for Disease Control and Prevention. (2023). What is Diabetes? https://www.cdc.gov/diabetes/basics/diabetes.html
    7. ElSayed, N. A., Aleppo, G., Aroda, V. R., Bannuru, R. R., Brown, F. M., Bruemmer, D., … & Gabbay, R. A. (2023). 7. Diabetes technology: standards of care in diabetes—2023. Diabetes Care, 46(Supplement_1), S111-S127.
    8. Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K. B., Ostolaza, H., & Martín, C. (2020). Pathophysiology of Type 2 Diabetes Mellitus. International journal of molecular sciences, 21(17), 6275. https://doi.org/10.3390/ijms21176275
    9. Ganesan, K., Rana, M. B. M., & Sultan, S. (2018). Oral hypoglycemic medications.
    10. Feingold, K. R., Anawalt, B., Boyce, A., Chrousos, G., Dungan, K., Grossman, A, & Kopp, P. (2020). Oral and injectable (non-insulin) pharmacological agents for type 2 diabetes. South Dartmouth (MA).
    11. E. (2022). Pancreas hormones. https://www.endocrine.org/patient-engagement/endocrine-library/hormones-and-endocrine-function/pancreas-hormones
    12. Kreider, K. E. (2021). Patient-centered medication selection for type 2 diabetes: A collaborative, patient-centered approach that considers a variety of factors will be most effective. American Nurse Journal, 16(11), 33-37.
    13. Banday, M. Z., Sameer, A. S., & Nissar, S. (2020). Pathophysiology of diabetes: An overview. Avicenna journal of medicine, 10(4), 174–188. https://doi.org/10.4103/ajm.ajm_53_20
    14. Draznin, B., Aroda, V. R., Bakris, G., Benson, G., Brown, F. M., Freeman, R., & American Diabetes Association Professional Practice Committee. (2022). 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2022. Diabetes care, 45(Suppl 1), S125-S143.
    15. World Health Organization. (2023). https://www.who.int/news-room/fact-sheets/detail/diabetes

     

    1. Hospice and Palliative Nurse’s Association. (2023, September 14). Hospice and Palliative Credentialing Center. Retrieved from AdvancingExpertCare.org: https://www.advancingexpertcare.
    2. Connor, S., Fitch, K., Iwaski, K., & Pyenson, B. (2006). Comparing Hospice and Nonhospice Patient Survival Among Patients Who Die Within a Three-Year Window. Journal of Pain and Symptom Management, 238-46.
    3. Coyle, N., Ferrell, B., & Paice, J. (2023). Oxford Textbooks in Palliative Medicine. In Oxford Textbook of Palliative Nursing. New York: Oxford Academic.
    4. Encyclopedia Brittanica. (2023, September 14). Retrieved from Merriam-Webster.com: https://www.merriam-webster.com/
    5. National Hospice and Palliative Care Organization. (2023, September 14). Hospice Care Overview For Professionals. Retrieved from NHPCO.org: https://www.nhpco.org/hospice-care-overview/ References:
    6. Cho, J., & Trent, A. (2006). Validating a decisional conflict scale. Medical Decision Making, 26(4), 373-380.
    7. Mullaney, T., et al. (2019). Informed consent: The role of the nurse. Journal of Radiology Nursing, 38(2), 177-183.
    8. Betancourt, J. R., Green, A. R., & Carillo, J. E. (2002). Cultural competence in health care: Emerging frameworks and practical approaches. The Commonwealth Fund.
    9. Institute of Medicine. (2000). To err is human: Building a safer health system. National Academies Press.
    10. American Nurses Association. (2019). Nursing: Scope and standards of practice. American Nurses Association
    11. National Hospice and Palliative Care Organization. (n.d.). History of Hospice Care. Retrieved from https://www.nhpco.org/about/hospice-care/history-of-hospice-care/
    12. Hospice UK. (n.d.). The History of Hospice Care. Retrieved from https://www.hospiceuk.org/about-hospice-care/the-history-of-hospice-care
    13. Philosophy 1. World Health Organization. (202).0 Palliative Care. Retrieved from https://www.who.int/news-room/fact-sheets/detail/palliative-care
    14. American Academy of Hospice and Palliative Medicine. (n.d.). History of Hospice and Palliative Medicine. Retrieved from https://aahpm.org/about/history-of-hospice-and-palliative-medicine
    15. Centers for Medicare & Medicaid Services. (n.d.). Medicare Benefit Policy Manual: Chapter 9 – Coverage of Hospice Services Under Hospital Insurance. Retrieved from https://www.cms.gov/Regulations-and-Guidance/Guidance/Manuals/downloads/bp102c09.pdf
    16. Hospice and Palliative Credentialing Center. (n.d.). CHPN – Certified Hospice and Palliative Nurse. Retrieved from https://www.nhpco.org/certification/chn-certified-hospice-nurse/
    17. National Hospice and Palliative Care Organization. (nice.d Nurse.). Hosp. Retrieved from https://www.nhpco.org/about/hospice-care/hospice-nurse/
    18. Patient-centered care(Reference: Institute of Medicine. (2014). Dying in America: Improving quality and honoring individual preferences near the end of life. National Academies Press).
    19. Shared decision making(Reference: Elwyn, G., et al. (2012). Shared decision making: A model for clinical practice. Journal of General Internal Medicine, 27(10), 1361-1367). 4.
    20. Psychosoc(Reference: Balboni, T. A., et al. (2010). Provision of spiritual support to patients with advanced cancer by religious communities and associations with medical care at the end of life. JAMA Internal Medicine, 170(15), 1109-1117).
    21. Pain and symptom management (Reference: Ferrell, B. R., et al. (2017). Integration of palliative care into standard oncology care: American Society of Clinical Oncology Clinical Practice Guideline Update. Journal of Clinical Oncology, 35(1), 96-112).
    22. Institute of Medicine. (2014). Dying in America: Improving quality and honoring individual preferences near the end of life. National Academies Press.
    23. Breen, C. M., Abernethy, A. P., & Abbott, K. H. (2011). Conflict associated with decisions to limit life-sustaining treatment in intensive care units. Journal of General Internal Medicine, 26(4), 389-394.
    24. Elwyn, G., et al. (2012). Shared decision making: A model for clinical practice. Journal of General Internal Medicine, 27(10), 1361-1367.
    25. Balboni, T. A., et al. (2010). Provision of spiritual support to patients with advanced cancer by religious communities and associations with medical care at the end of life. JAMA Internal Medicine, 170(15), 1109-1117.
    26. Ferrell, B. R., et al. (2017). Integration of palliative care into standard oncology care: American Society of Clinical Oncology Clinical Practice Guideline Update. Journal of Clinical Oncology, 35(1), 96-112.

     

    1. San Filippo, D. (2006). Philosophical, Psychological & Spiritual Perspectives on Death & Dying. Faculty Publications. 31. https://digitalcommons.nl.edu/faculty_publications/31
    2. Kyota, A. & Knda, K. (2019). How to come to terms with facing death: a qualitive study examining the experiences of patients with terminal cancer. https://doi.org/10.1186/s12904-019-0417-6
    3. Peters, L. et al.  (2013). How death anxiety impacts nurses’ caring for patients at the end of life: a review of literature. The open nursing journal, 7, 14–21. https://doi.org/10.2174/1874434601307010014
    4. Bergenholtz, H. et al. (2020). Talking about death and dying in a hospital setting- a qualitative study of the wishes for end-of-life conversations from the perspective of patients and spouses.  https://doi.org/10.1186/s12904-020-00675-1
    5. Oates J.R.  & Maani-Fogelman P.A. (2022). Nursing Grief and Loss. https://www.ncbi.nlm.nih.gov/books/NBK518989/
    6. Bodi, S., Matus, C., & Hickey, D. (2022). Right place, right time: Facilitating end-of-life conversations. The Journal of family practice, 71(2), 74–79. https://doi.org/10.12788/jfp.0333
    7. Pentaris, P., & Tripathi, K. (2022). Palliative pProfessionals’ Views on the Importance of Religion, Belief, and Spiritual Identities Toward the End of Life. International journal of environmental research and public health, 19(10), 6031. https://doi.org/10.3390/ijerph19106031
    8. Lin, H. Y. et el. (2021). Nurses’ knowledge, attitude, and competence regarding palliative and end-of-life care: a path analysis. PeerJ, 9, e11864. https://doi.org/10.7717/peerj.11864
    9. Becker, C. et al. (2020). Communication challenges in end-of-life decisions. Swiss medical weekly, 150, w20351. https://doi.org/10.4414/smw.2020.20351
    10. Oates J.R. & Maani C. V. Death and Dying. [Updated 2022 Nov 29]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-.  https://www.ncbi.nlm.nih.gov/books/NBK536978/
    11. Ijaopo, E. O. et al. (2023). A Review of Clinical Signs and Symptoms of Imminent End-of-Life in Individuals With Advanced Illness. Gerontology & geriatric medicine, 9, 23337214231183243. https://doi.org/10.1177/23337214231183243
    12. Lee, E. K. et el. (2021). End-of-Life Assessments and Communication for Dying Patients and Their Families. Journal of hospice and palliative care, 24(3), 194–197. https://doi.org/10.14475/jhpc.2021.24.3.194
    13. Onishi H. (2021). Communication at the End of Life. Journal of hospice and palliative care, 24(3), 135–143. https://doi.org/10.14475/jhpc.2021.24.3.135

     

    1. Brown, J. D., Harnett, J., Chambers, R., & Sato, R. (2018). The relative burden of community-acquired pneumonia hospitalizations in older adults: a retrospective observational study in the United States. BMC geriatrics, 18(1), 92. https://doi.org/10.1186/s12877-018-0787-2
    2. Centers for Disease Control and Prevention. (2022, May 18). Pneumococcal disease: Symptoms and complications. Retrieved from https://www.cdc.gov/pneumococcal/about/symptoms-complications.html
    3. Centers for Disease Control and Prevention. (2023, September 19). FastStats: Pneumonia. Retrieved from https://www.cdc.gov/nchs/fastats/pneumonia.htm
    4. Chen, S., Kent, B., & Cui, Y. (2021). Interventions to prevent aspiration in older adults with dysphagia living in nursing homes: a scoping review. BMC geriatrics, 21(1), 429. https://doi.org/10.1186/s12877-021-02366-9
    5. Coutts, K., & Pillay, M. (2021). Decision making and the bedside assessment: The Speech Language Therapists’ thinking when making a diagnosis at the bed. The South African Journal of communication disorders 68(1), e1–e8. https://doi.org/10.4102/sajcd.v68i1.790
    6. Ebihara T. (2022). Comprehensive Approaches to Aspiration Pneumonia and Dysphagia in the Elderly on the Disease Time-Axis. Journal of clinical medicine, 11(18), 5323. https://doi.org/10.3390/jcm11185323
    7. Gershonovitch, R., Yarom, N., & Findler, M. (2020). Preventing ventilator-associated pneumonia in intensive care unit by improved oral care: A review of randomized control trials. SN comprehensive clinical medicine, 2(6), 727–733. https://doi.org/10.1007/s42399-020-00319-8
    8. Hayes, B. H., Haberling, D. L., Kennedy, J. L., Varma, J. K., Fry, A. M., & Vora, N. M. (2018). Burden of Pneumonia-Associated Hospitalizations: United States, 2001-2014. Chest, 153(2), 427–437. https://doi.org/10.1016/j.chest.2017.09.041
    9. Heron M. (2021). Deaths: Leading Causes for 2019. National vital statistics reports: from the Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System, 70(9), 1–114.
    10. Jain, V., Vashisht, R., Yilmaz, G., & Bhardwaj, A. (Updated 2023, July 31). Pneumonia pathology. In StatPearls. StatPearls Publishing. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK526116/
    11. Nakamura, T., & Kurosaki, S. (2020). Effects of Early Dysphagia Rehabilitation by Speech-language-hearing Therapists on Patients with Severe Aspiration Pneumonia. Progress in rehabilitation medicine, 5, 20200020. https://doi.org/10.2490/prm.20200020
    12. National Heart, Lung, and Blood Institute. (Updated 2022, March 24). Pneumonia causes and risk factors. U.S. Department of Health and Human Services, National Institutes of Health. Retrieved from https://www.nhlbi.nih.gov/health/pneumonia/causes
    13. National Heart, Lung, and Blood Institute. (Updated 2022, March 24). Pneumonia prevention. U.S. Department of Health and Human Services, National Institutes of Health. Retrieved from https://www.nhlbi.nih.gov/health/pneumonia/prevention
    14. Peters, Z. J., Ashman, J. J., Schwartzman, A., & DeFrances, C. J. (2022). National Hospital Care Survey Demonstration Projects: Examination of Inpatient Hospitalization and Risk of Mortality Among Patients Diagnosed with Pneumonia. National health statistics reports, (167), 1–9.
    15. Regunath, H., & Oba, Y. (Updated 2022, November 15). Community-acquired pneumonia. In StatPearls. StatPearls Publishing. Retrieved from  https://www.ncbi.nlm.nih.gov/books/NBK430749/
    16. Sanivarapu, R. R., & Gibson, J. (Updated 2023, May 8). Aspiration pneumonia. In StatPearls. StatPearls Publishing. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK470459/
    17. Sattar, S.B.A., & Sharma, S. (Updated 2023, August 14). Bacterial pneumonia. In StatPearls. StatPearls Publishing. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK513321/
    18. Sattar, S.B.A., Sharma, S., & Headley, A. (Updated 2023, August 14). Bacterial pneumonia (Nursing). In StatPearls. StatPearls Publishing. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK568697/
    19. Shoar, S., & Musher, D. M. (2020). Etiology of community-acquired pneumonia in adults: a systematic review. Pneumonia (Nathan Qld.), 12, 11. https://doi.org/10.1186/s41479-020-00074-3
    20. Torres, A., & Martin-Loeches, I. (2020). Invasive Pulmonary Aspergillosis in Ventilator-associated Pneumonia: The Hidden Enemy? American journal of respiratory and critical care medicine, 202(8), 1071–1073. https://doi.org/10.1164/rccm.202006-2605ED
    21. Troll, C., Trapl-Grundschober, M., Teuschl, Y., Cerrito, A., Compte, M. G., & Siegemund, M. (2023). A bedside swallowing screen for the identification of post-extubation dysphagia on the intensive care unit – validation of the Gugging Swallowing Screen (GUSS)-ICU. BMC anesthesiology, 23(1), 122. https://doi.org/10.1186/s12871-023-02072-6

     

    Disclaimer:

    Use of Course Content. The courses provided by NCC are based on industry knowledge and input from professional nurses, experts, practitioners, and other individuals and institutions. The information presented in this course is intended solely for the use of healthcare professionals taking this course, for credit, from NCC. The information is designed to assist healthcare professionals, including nurses, in addressing issues associated with healthcare. The information provided in this course is general in nature and is not designed to address any specific situation. This publication in no way absolves facilities of their responsibility for the appropriate orientation of healthcare professionals. Hospitals or other organizations using this publication as a part of their own orientation processes should review the contents of this publication to ensure accuracy and compliance before using this publication. Knowledge, procedures or insight gained from the Student in the course of taking classes provided by NCC may be used at the Student’s discretion during their course of work or otherwise in a professional capacity. The Student understands and agrees that NCC shall not be held liable for any acts, errors, advice or omissions provided by the Student based on knowledge or advice acquired by NCC. The Student is solely responsible for his/her own actions, even if information and/or education was acquired from a NCC course pertaining to that action or actions. By clicking “complete” you are agreeing to these terms of use.

     

    Complete Survey

    Give us your thoughts and feedback

    Click Complete

    To receive your certificate

    Want to earn credit for this course? Sign up (new users) or Log in (existing users) to complete this course for credit and receive your certificate instantly.